
B5IM2034

Master’s Thesis

Semantic parsing with a domain ontology
領域オントロジーを用いた

セマンティックパージング

Corentin DUMONT

March 24, 2017

Graduate School of Information Sciences
Tohoku University

A Master’s Thesis
submitted to System Information Sciences,
Graduate School of Information Sciences,

Tohoku University
in partial fulfillment of the requirements for the degree of

Master of Information Sciences

Corentin DUMONT

Thesis Committee:
Professor Kentaro Inui (Supervisor)
Professor Yoshifumi Kitamura
Professor Tetsuo Kinoshita
Associate Professor Naoaki Okazaki (Co-supervisor)

Semantic parsing with a domain ontology
領域オントロジーを用いた

セマンティックパージング*

Corentin DUMONT

Abstract

Using restricted domains in question answering (QA) allows to build an ontol-
ogy of the domain that can be used with by a semantic parser to improve the
performance of a QA system. However, building an ontology and a semantic
parser can be costly and usually require a large amount of annotated data that
may not be available for specific domains. Our work is a case study on how to
build a semantic parser and a domain ontology with very low resource for the
video game Minecraft.
We show that the creation of a semantic parser and the ontology it is based on
can be done with a very low amount of expert manual annotations, facilitated by
the use of automatically collected data from the web, and that fairly good per-
formance can be obtained. Thus, as a contribution, this case study is a first step
in solving the common problem of building a QA system in a restricted domain
from very low resource and low manual effort.

Keywords:

Knowledge acquisition, Ontology, Semantic parsing, Question Answering

*Master’s Thesis, System Information Sciences, Graduate School of Information Sciences,
Tohoku University, B5IM2034, March 24, 2017.

i

Contents
1 Introduction 1

2 Case study: Minecraft 3
2.1 Minecraft . 3
2.2 Why Minecraft? . 4

3 Collect data about Minecraft 7
3.1 Knowledge corpus . 7
3.2 Question corpus . 8

3.2.1 Can the questions be answered by the knowledge corpus? . 11
3.3 Minecraft Ontology . 12

3.3.1 Can our meaning representation express enough information? 16
3.4 Dataset . 18
3.5 Conclusion on the data collection 20

4 Semantic Parsing 22
4.1 Instance classification . 23

4.1.1 Word Embedding . 23
4.1.2 Models for Instance Classification 25
4.1.3 Tuning of Hyper-parameters 29
4.1.4 Experimental results for Instance Classification 32
4.1.5 Conclusion on Instance classification 34

4.2 Relation classification . 35
4.2.1 Dependency Embedding 35
4.2.2 Models for Relation Classification 37
4.2.3 Tuning of Hyper-parameters 39
4.2.4 Experimental results for Relation Classification 41
4.2.5 Conclusion on Relation classification 44

4.3 Crowd-Sourcing . 45

5 Question Answering 47
5.1 Knowledge graphs and question graphs 47
5.2 QA algorithm . 48

ii

6 Conclusion 51

Acknowledgements 53

Appendix 57

A Question Answering: example of logical reasoning on knowledge
graphs 57

iii

List of Figures
1 Interaction between players and NPCs in current video games . . 1
2 The final goal of our work, a natural language QA system 2
3 A snapshot of Minecraft . 3
4 Entity types and actions in Minecraft 3
5 Text and structured data in the websites used for knowledge ex-

traction . 7
6 Extraction of Minecraft knowledge from websites 8
7 Instances of the Ontology . 12
8 Example of instance: Ore (entity) 13
9 Relations of the Ontology . 14
10 Example of relation: Weapon (non-assertion) 15
11 Annotation tool . 19
12 Semantic Parsing . 22
13 Syntactic tree of the sentence “A block a gold is a type of ore that

can be mined with any pickaxe” 23
14 Embedding of the word “ore” . 24
15 DCS tree of the phrase “block of gold” 24
16 Formula of the VecDCS embedding vector of a syntactic sub-tree 25
17 Two phrase embedding models . 25
18 Distance between ’diamond block’ and ’block of diamond’ 26
19 Flat SVM model for instance classification 27
20 Improvement: Hierarchical SVM model for instance classification 28
21 Distance threshold tuning for the StringSim model 30
22 Hyper-parameters tuning for the Flat SVM model 30
23 Hyper-parameters tuning for the Hierarchical SVM model 31
24 Confusion matrix of instance classification with the Flat SVM model 34
25 Embedding of a syntactic dependency unigram 36
26 Embedding of a syntactic path 37
27 SVM model for relation classification 38
28 Improvement: SVM model with constraints for relation classification 39
29 Hyper-parameters tuning for the Relation Classification models . 40

iv

30 Confusion matrices of relation classification using dependency bi-
grams features without constraints (left) and with constraints (right) 43

31 Example of crowd-sourcing annotation with CrowdFlower 46
32 Example of yes/no question graph and the corresponding assertion

graph . 48
33 Example of question-word question graph and the knowledge graph

of its answer . 49
34 Question graph . 57
35 Axiom . 57
36 Piece of knowledge . 58
37 Logical reasoning to retrieve the answer 58

v

List of Tables
1 A summary of the knowledge database 9
2 Example of factoid and non-factoid questions 10
3 Examples of similar questions written 10
4 A fact (the first type) representing a subsumption between entity

classes. 15
5 A fact (the first type) about causality between events. 16
6 Facts (the second type) on properties of single events. 16
7 Experimental results for Instance Classification 33
8 Precision and recall for Instance Classification 33
9 Experimental results for Relation Classification 41
10 Precision and recall for Relation Classification 42
11 Impact of the syntactic information quality on Relation Classifi-

cation performance . 44
12 Relation Classification performance on crowd-sourcing annotations 47

vi

1 Introduction
The initial motivation of this work is to improve the interaction between the
players and Non-Player Characters (NPCs) in video games. As in Figure 1, in
current video games, interaction between the player and the NPCs is very limited
in the sense that the player cannot ask his own questions. Indeed, the game will
often propose several possible questions or choices to the player, who can only
choose among them.
Our final goal is to develop a natural language question answering system that

Figure 1: Interaction between players and NPCs in current video games

would make possible a real interaction between the player and the NPCs. Such
a system, as shown in Figure 2, would allow the player to ask about anything in
English about the content of the game, and make the NPCs able to answer in
natural English to any question of the player as long as it is about the content of
the game.
Unlike many QA systems that are designed to answer real world questions [1, 2],
the final goal of this research is to build a system that can answer questions using
the logic specific to the game, which may not be identical to the logic in the real
world. For our study, we choose a popular game called Minecraft, whose openness
provides a great liberty for players, which guarantees a large number of possible

1

Figure 2: The final goal of our work, a natural language QA system

questions to ask about the game, and yet the presence of a specific logic that
limits the actions of players. We are interested in this problem setting because
it provides a testbed for combining Natural Language Processing with advanced
logical inference techniques.
Our final system should be able to access knowledge about the content of the
game, so we need to collect this knowledge. It should also understand the content
of this knowledge and the players’ questions in order to construct a relevant
answer, so we need to build a semantic parser that will extract the meaning from
English sentences by finding the important instances and the relations that link
these instances together. Finally, it has to answer the questions by constructing
relevant answers from the knowledge it has about the game using logical inference
techniques.
As a whole, our work is a case study on how to build a Semantic Parser (and in
the end, a complete Question Answering system) from very low resource in the
restricted domain of a video game.

2

2 Case study: Minecraft

2.1 Minecraft

Figure 3: A snapshot of Minecraft

Figure 4: Entity types and actions in Minecraft

Minecraft (Figure 3) is a sandbox video game, which means that the player is
free to choose the actions he wants to execute, and the order of these actions.
However, as all video games, the number of possible actions is limited. The

3

main occupation of the player in Minecraft is to survive in a world populated
by monsters, by finding resources (e.g. mining minerals, growing plants, etc.),
to create structures, items and weapons (i.e. crafting them with the collected
resources by following recipes) and beating monsters using crafted weapons and
items to protect the created structures and earn experience and new items, in
order to continue to develop.
The different entities of the game follow a hierarchy. Entities can be divided
into Structures, Mobs (monsters), and Objects, which are divided into Items
(for example used to fight) and Blocks (used to build Structures), and so on.
The player can interact with these entities, or make independent actions. These
actions and interactions are summarized in the Figure 4.
Minecraft players usually ask about:
properties of entities,

How many health point does a iron golem have? (100)

relations between entities,

What is a cake composed of? (milk, sugar, egg and wheat)

or conditions and effects of actions.

What pickaxe is needed to break a diamond block? (iron pickaxe or
diamond pickaxe)
How can I get a door? (craft door, find door in village)

The knowledge needed to answer most of Minecraft players’ questions are avail-
able on several websites dedicated to Minecraft that are often written by players
themselves.

2.2 Why Minecraft?
Why did we choose Minecraft for our case study?
The liberty of the player guarantees a large number of possible questions to ask
about the game, but the game follows nonetheless a logic that can be learned by
a QA system to increase its ability to understand the meaning of the questions.
In other words, Minecraft players are likely to ask non-trivial and difficult ques-
tions like:

4

What is the best way to obtain Obsidian?

To answer this question, we need to know about all the different ways to obtain
obsidian, and we need to compare these methods, which is not possible if we do
not understand them. However, the strict logic that rules the game makes these
difficult questions possible to answer by an automatic QA system, contrary to
such questions in the real world. For example, thanks to this strict logic, in the
following sentences:

The player kills a wolf with a ???.

an automatic system can deduce that ??? can only be replaced with sword, pick-
axe, axe or shovel. This kind of logic can be used to resolve ambiguities.
Our final goal is to build a QA system that can translate a question asked by
players to a series of queries about the entities and actions in the game, and find a
relevant answer in the knowledge database among all the information about these
entities and actions, possibly by combining several pieces of knowledge together
to answer difficult questions.
Since Minecraft is a popular game, we expect that we can find abundant data
from the Web. Furthermore, Minecraft has been the domain for other works on
artificial intelligence [3, 4], and not only in natural language processing (NLP).
So choosing Minecraft as a domain can make our work more valuable and have a
better impact.
There have been many efforts done to restrict the domain of the QA task and pur-
sue some advanced reasoning. The Todai Robot Project [5] restricts the domain
to university entrance exam questions. Other research includes solving algebra
word problems [6] and instructing robots [7]. As a complement to these previ-
ous works, we believe the using of an open world video game as the domain has
several merits. Firstly, the logic in a video game is simpler than the real world,
which means that it can be handled readily. Therefore, this domain may pro-
vide a convenient testbed for integrating logical inference techniques into NLP
systems, such as the logical inference using dependency-based compositional se-
mantics [8]. Secondly, despite the rather simple rules, open world video games
provide enough liberty for players, and their popularity attracts people to ask
many questions about them, including creative and fun questions that can be

5

solved only by completely understanding the rules and logically combining them.
Therefore, we expect the domain to be interesting and challenging as well.

6

3 Collect data about Minecraft

3.1 Knowledge corpus
A knowledge database is extracted from three different wiki-like websites1. These
websites are constituted of pages describing an entity or a concept of the game.
Similar to those from Wikipedia, the web-pages can be divided into two parts,
namely the structured data such as infoboxes, tables, or web-pages hierarchy, and
unstructured data such as natural language texts (Figure 5).

Figure 5: Text and structured data in the websites used for knowledge extraction

We preserve the structures of infoboxes and tables in our extraction, and sep-
arate structured and unstructured data. As a result, we obtain a database com-

1 www.minecraft.gamepedia.com
www.minecraft.wikia.com
www.minecraftguides.org

7

http://www.minecraft.gamepedia.com/
http://www.minecraft.wikia.com/
http://www.minecraftguides.org/

posed of 1063 unique text files, organized in 51 folders and sub-folders to regroup
related objects (see Table 1 for details).

To improve the quality of the extracted data, we defined extracting rules for
each of the 3 websites. The main purpose of these rules is to extract separately
structured and unstructured data, to remove useless information and to avoid
extracting segments of sentences that loose their meaning out of context (see
Figure 6)

Figure 6: Extraction of Minecraft knowledge from websites

3.2 Question corpus
A corpus of questions and answers has been created on the basis of posts extracted
from quiz websites2. 754 questions have been collected from different websites,
and 544 of them have been extracted with their answer.
Then, we manually selected 100 relevant questions. For our purpose, it is impor-
tant that the questions deal with facts inside the game, and not facts that are
outside the game (e.g. questions about the creator of the game, the programming
language used, etc.).

2 www.quizlet.com
www.allthetests.com
www.gamefaqs.com

8

http://www.quizlet.com/
http://www.allthetests.com/
http://www.gamefaqs.com/

Fo
ld
er
s

N
um

be
r
of

Fi
le
s

D
es
cr
ip
tio

n
Bl
oc
ks

15
4

En
vi
ro
nm

en
t’s

bl
oc
ks

D
B-

G
am

ep
ed
ia

En
tit

y
72

M
ob

s
(M

on
st
er
s)

(fr
om

m
in
ec
ra
ft.
ga

m
ep

ed
ia
.c
om

)
It
em

s
16

1
O
bj
ec
ts

us
ed

by
th
e
pl
ay
er

O
th
er
s

18
3

G
am

ep
la
y,

H
ist

or
y,

et
c.

To
ta
l:
53

0
fil
es

Bl
oc
ks

20
0

D
B-

W
ik
ia

It
em

s
16

7
(fr

om
m
in
ec
ra
ft.
w
ik
ia
.c
om

)
M
ai
n

23
Im

po
rt
an

t
ob

je
ct
s/
en
tit

ie
s

M
ob

s
56 To

ta
l:
39

2
fil
es

Bl
oc
ks

10
1

M
in
er
al
s,

Pl
an

ts
,e

tc
.

Br
ew

in
g

34
R
ec
ip
es

of
po

tio
ns

Bu
ild

in
g

7
Fa

rm
in
g

7
D
B-

G
ui
de
s

It
em

s
77

Fo
od

,T
oo

ls,
W
ea
po

ns
,e

tc
.

(fr
om

m
in
ec
ra
ftg

ui
de
s.o

rg
)

M
ai
n

10
Su

m
m
ar
ie
s
of

su
b-
fo
ld
er
s

M
in
i-G

am
es

25
M
ob

s
27

Tu
to
ria

ls
30 To

ta
l:
30

0
fil
es

To
ta
l:
10

63
un

iq
ue

fil
es

(1
22

2
ex
tr
ac
te
d
fil
es
)

Ta
bl
e
1:

A
su
m
m
ar
y
of

th
e
kn

ow
le
dg

e
da

ta
ba

se

9

Factoid questions:
What Item should I use to tame a Wolf?
Are Spiders Hostile?

Non-factoid questions:
What is the best way to spawn the two
different types of Golem?
Is it interesting to kill the Ender Dragon?

Table 2: Example of factoid and non-factoid questions

We selected both factoid and non-factoid questions (see Table 2), and tried to
include as much language variety (vocabulary and grammar) as possible in the
reference to the concepts of the game. For each selected question, we wrote about
nine questions with the same meaning but asked differently, or with a close or
related meaning (Table 3).

0 Where do you find a Mushroom?
1 How do you obtain a Mushroom?
2 How do I get a Mushroom?
3 Where can I get a Mushroom?
4 Where can I obtain a Mushroom?
5 What is a way to get a Mushroom?
6 How to get Mushrooms?
7 Where do I find Mushrooms?
8 Where are Mushrooms located?
9 Where can Mushrooms be found?

Table 3: Examples of similar questions written

This way, we obtained a corpus that can be used for handling language vari-
ations in the QA task. We finally obtained a corpus of 1684 questions, among
which 928 has been written on the basis of 100 relevant questions.

10

3.2.1 Can the questions be answered by the knowledge corpus?

From the questions that have been extracted from quizzes websites, we can dis-
tinguish 3 types of questions. Some questions are not relevant, because they deal
with some facts external to the game itself, or because they contain a mistake:

What is the name of the famous yellow duck who plays Minecraft on
YouTube? (YouTube is external to the game.)
What are the 5 types of wood? (There are actually 6 types of wood.)

Some questions can be “easily” answered with the knowledge database. This is
the case when the answer is clearly written in the database (for example a numeric
value in a table). The questions that can be “easily” answered are often factoid
questions:

How many hearts does a Giant have? (The answer, 50 hearts, is
written in the infobox of the Giant.)

This kind of question can be answered simply by locating the place where the
answer is written in the database. However, some questions can be answered
only by computing the answer using crossed information. This is the case of
non-factoid questions, which can be considered as “difficult” to answer:

What is the best strategy for finding diamonds? (To answer this ques-
tion, the system has to find all the different ways to find diamonds
and evaluate the efficiency of each method. This evaluation is chal-
lenging because the criteria for a good strategy are not stated in the
question.)

In our data, the non-relevant questions are rare (about 2%), whereas the non-
factoid questions are quite common (about 20%), which provides a good motiva-
tion for a QA system to handle complicated questions.
However, answering non-factoid questions implies reasoning, i.e. logic inference
on different pieces of information contained in the knowledge database, which
can only be done on a structured database. This is why we defined the ontology
of a meaning representation, which is used to structure the natural sentences of
the database to their logical form. The challenge is to balance the complexity

11

of the meaning representation, as it must be simple to take advantage of the
simple logic of the game, but must be expressive enough so that it can be used
to structure all the useful information.

3.3 Minecraft Ontology
Our ontology defines two types of classes to represent the instances in Minecraft
and the relations that links these instances together.

The Instance classes regroup Minecraft Entities and Events (Figure 7).

Figure 7: Instances of the Ontology

Entity classes include all Structures, Objects (e.g. Blocks, Items, etc.) and
Mobs that the player can interact with. The ontology defines the list of 496
Entities and their hierarchy (e.g. the Minecraft Entity “Stone” is a subclass
of “Natural Block”). The list of entities and their hierarchy is constructed by
checking named entities appeared in our QA corpus and using the hierarchy of
web-pages of the Gamepedia website. This list is supposed to have high coverage.
We have regrouped some concepts that are usually used by players as different
ones but are actually the same objects in the game. For example, both “chicken”
and “chick” are represented by the same Minecraft Entity class Chicken, and are
considered as two variations of this class. The regrouping is done because these

12

entities have similar interactions with the player and other entities, and has been
mainly done automatically by using the infoboxes of the Gamepedia website that
lists the possible variations of entities.
Event classes are used to represent events or actions in the game. We make the
list of Event classes by considering possible operations by the player and checking
questions asked in our QA corpus. We tried to minimize the number of Event
classes by regrouping some events that can be expressed as the same actions linked
to different Minecraft Entities. For example, both the actions sleep and eat are
regrouped into the event use, because “sleeping” and “eating” are equivalent to
“using” the Minecraft Entities bed and food, respectively. There is currently no
hierarchy between event classes, except a common root EVENT class, but the
fact that entities and events are regrouped under instance classes and used simi-
larly by our classification models would make very easy to add an event hierarchy
in the ontology.
Besides the hierarchy, each instance class is further defined in the ontology (ex-
ample in Figure 8).

Figure 8: Example of instance: Ore (entity)

The Relation classes represent a link between two instances. The ontology
defines the list of 54 relation classes and the constraints that define what instances
classes can be linked using each relation class. Relation classes are divided in

13

assertion relations (or factual relations, we will use “_” at the beginning of the
name) and non-assertion relations (see Figure 9). While assertion relations are
used to express a piece of information (e.g. property of an instance, or causality
link between to events), non-assertion relations are used to express the semantic
link between two instances that appear in the same piece of information (e.g. in
the sentence “The player can kill a wolf with a golden sword”, the “golden sword”
is the weapon used to “kill”, so the event “kill” is linked to the entity “golden
sword” by the relation “weapon”.)

Figure 9: Relations of the Ontology

Each relation class is further defined in the ontology (example in Figure 10).
We can use a Davidsonian style representation to write knowledge with our

ontology. Instances are then associated to a variable name (e for events, x for
entities) and Relations are represented by predicates on these variables. For
example, an entity x1 dropping an item x2 is represented as

drop(e), dropper(e, x1), dropped(e, x2).

A piece of information can be asserted by a assertion relation of our ontology,
but the existence of a set of instances linked by non-assertion relation in the
knowledge database also represents a piece of information. In other words, there

14

Figure 10: Example of relation: Weapon (non-assertion)

are two types of facts. The first type regards the relation between two instances
(entities or events), such as a comparison, a subsumption, or a causal relation
(effect or condition), expressed by an assertion relation (Figure 4 or Figure 5).
The second type describes a single Minecraft Instance in the game by linking it
with other instances through non-assertion relations and express for example the
properties of an entity or the probability of an event to occur (Figure 6).

Gold is a type of ore.
gold(x1), ore(x2)

_type_of(x1, x2)

Table 4: A fact (the first type) representing a subsumption between entity classes.

As an example of possible logical inference, the following piece of information
is written in our knowledge database:

If a chicken dies while on fire, it will drop cooked chicken.

Then, assuming the system has the following common sense knowledge (axiom):

If an item is dropped, the player gets it.

we can deduce the following:

If a chicken is killed by fire, the player gets cooked chicken.

A system equipped with logical inference ability can thus answer a question such
as:

15

If a chicken dies while on fire, it drops cooked
chicken instead of raw chicken.

chicken(x1), kill(e1), f ire(x2), drop(e2),

cooked_chicken(x3), raw_chicken(x4),

killed(e1, x1), weapon(e1, x2),

dropper(e2, x1), dropped(e2, x3),

_effect(e1, e2)

Table 5: A fact (the first type) about causality between events.

Stone can be mined with a pickaxe.
stone(x1),mine(e1), pickaxe(x2)

mined(e1, x1), tool(e1, x2)

Bats usually spawn in caves.
bat(x1), spawn(e1), cavern(x2),

spawned(e1, x1), in_environment(e1, x2),

Table 6: Facts (the second type) on properties of single events.

How to obtain cooked chicken?

by the inference process described above and responds:

You should kill a chicken with fire.

3.3.1 Can our meaning representation express enough information?

A question will be answerable if the answer is present in the knowledge database
(the question is theoretically answerable), and if all the pieces of information
that are needed to answer can be represented with our meaning representation.
We expect the contents extracted from the 3 complete websites to have a high
coverage, so most of the relevant questions are theoretically answerable. The

16

quality of our QA system will then directly depend on the quantity of relevant
pieces of information (that can be used to answer players’ questions) that can be
represented with the meaning representation that we defined.

We manually answered 10 questions of our training corpus by locating all the
related pieces of information (35 different pieces of information in the database
were relevant to answer the questions), and by evaluating the difficulty to answer
them using our meaning representation. The preliminary analysis of the results
allows us to draw some conclusions.
Firstly, all the pieces of information that are related to a question are not neces-
sary to construct a satisfying answer. In our annotations, only 40% of the pieces
of information were necessary. The main reason for that is that most of these
pieces of information bring details that are not compulsory to construct a relevant
answer.
Secondly, in its entirety, the knowledge database is not highly redundant (we
have chosen websites with complementary information). In our annotations, more
than 60% of the pieces of information were written only once. However, if we only
consider the pieces of information that were absolutely necessary to construct rel-
evant answers, about 70% of them were redundant and sometimes appeared in
both text and tables (already structured data), what should be an advantage in
the structuring process of the knowledge database. Nonetheless, we will have to
care about the recall of the translation process not to loose essential information.
Thirdly, for 30% of the annotated questions, information contained in natural
sentences and information contained in tables had to be combined in order to
construct a relevant answer. So the final QA system will have to be able to com-
bine different types of information together. This may be part of future works, as
our study focuses on structuring textual information through semantic parsing.
Fourthly, the meaning representation can only represent the information in a
single sentence, and even by solving the co-reference problem with the Stanford
core NLP tool, we sometimes loose or misunderstand important information by
removing the context of the sentence. In particular there is a risk to generalize
some facts that are only true in a specific context that is not specified in the
sentence. As the pages of the websites we used for the knowledge database are

17

divided into sections, we believe that this problem can be at least partially solved
by using the names of these sections to solve some further co-references and lacks
of context. This problem may also be part of future works.
Eventually, 30% of the annotated questions were not answerable with the knowl-
edge database alone because some pieces of information, necessary for the infer-
ence process that lead to an answer, were not written in the database. These
pieces of information are axioms that are obvious for human readers but that
have to be taught to the QA system. For example, the question

How do I obtain an Enchantment Table?

can not be answered with the knowledge database, unless the QA system is told
that:

When the player craft an object, the object is obtained by the player.

Indeed, if the crafting recipe of the Enchantment Table is written in the database,
it is not explicitly written that the player will obtain this object by following this
recipe. These axioms will probably have to be taught manually, but fortunately,
the simple logic of Minecraft should restrict a lot the number of such axioms to
about 10 axioms.

3.4 Dataset
Finally, to finish with the collection of data about Minecraft, a semantic parser
for Minecraft has to be trained to recognize instances and relations in sentences.
So we built a training dataset by annotating instances and relations in sentences
about Minecraft (sentences from the text of the knowledge corpus we extracted).
For example, when annotating the sentence:

If the cow dies while on fire, steak will be dropped instead of beef.

we annotate the instances by putting the labels cow, kill, fire, steak, drop, raw_beef
(which are instances of our ontology) on the groups of words that stand for these
instances in the sentence. Then, for each pair of instances that are related by a
relation of our ontology, we put a label corresponding to the relation, for example
killed for the relation between kill and cow, or effect for the relation between kill

18

and drop.
We can represent these annotations with a Davidsonian style:
instance annotations:

cow(x1), kill(e1), f ire(x2), steak(x3), drop(e2), raw_beef(x4)

relation annotations (non-assertions):

killed(e1, x1), weapon(e1, x2), dropped(e2, x3).

relation annotations (assertions):

_effect(e1, e2).

To do this annotation easily, we developed a specific annotation tool that in-
tegrates the ontology (see Figure 11). s it contains the ontology, this tool can

Figure 11: Annotation tool

propose the possible labels to the annotator, in order to simplify the annotation

19

process and to ensure that the annotation respects the ontology constraints.
Using this tool, we manually annotated 301 samples of instances (142 positive
examples and 159 negative examples) and 485 samples of relations (266 positive
examples and 219 negative examples).
Furthermore, we also created 6471 automatic samples of instances (positive exam-
ples only) from the anchors contained in the extracted knowledge corpus. Indeed,
such as Wikipedia, the 3 websites we extracted knowledge from contain a lot of
hyperlinks that lead to an other page of the same website, called anchors. These
anchors then link a fragment of text to the title of an other page. If the title of
the page pointed by a hyperlink can be identify as the name of an instance class
in the ontology, the fragment of text that holds the hyperlink becomes a positive
example for this instance class, and can be added to the training dataset.

3.5 Conclusion on the data collection
In this section, we first have described a knowledge database and a question an-
swering corpus related to the video game Minecraft. We have shown that even for
low resource domains, data can be extracted from the web, by designing adapted
extracting rules.
We saw that the extracted structured data can be used to make the definition of
an ontology easier.
And we saw that the textual data can be used to create a training dataset for a
semantic parser, and that this training dataset can be completed automatically
with instances samples by using websites anchors. We will show in the following
section on semantic parsing that we can also use textual data to train embedding
models that we will use to improve the performance of the semantic parser.

Our final goal is to use the collected data to build a system that can answer
questions using the logic specific to the game. A lot of research has been done
on the answering of real world questions using Freebase [1, 2] or Wikipedia [9].
Datasets for these tasks usually favour systems that do simple queries of facts
on the knowledge database [2]. As the complexity of the questions increases,
answering the questions usually becomes considerably difficult [9], due to the
vast complexity of the real world. Our purpose is to show that in restricted

20

domains with a strict logic, such as video games, even difficult questions can be
addressed, and this by using only a very limited quantity of annotated resource.
This will be the point of the following sections.

21

4 Semantic Parsing
In the context of our study, semantic parsing is a process that take a sentence as
input and outputs a knowledge graph that represents the meaning of the sentence
(see Figure 12).

Figure 12: Semantic Parsing

The knowledge graph is composed of instances (the nodes) and relations (the
edges) that belong to the ontology that we defined previously.
The knowledge graph is constructed in two steps, the instance classification that
generates the nodes (in red and blue), and the relation classification that generates
the edges (in green).
There is an other process called syntactic parsing that, like semantic parsing,
generates an output graph (the syntactic tree, see Figure 13) from an input
sentence, but, contrary to semantic parsing, this graph does not represent the
meaning of the sentence but its syntax. Nodes are the words of the sentence, and
edges are the syntactic dependencies between these words.

We can notice a similarity between the knowledge graph and the syntactic tree.
Thus, our idea was to use the information contained in the syntactic tree as a base
for the semantic parsing. In particular, using the words (nodes of the syntactic

22

Figure 13: Syntactic tree of the sentence “A block a gold is a type of ore that
can be mined with any pickaxe”

tree) in the instance classification step, and the syntactic dependencies (edges of
the syntactic tree) in relation classification step.
The syntactic parsing process does not depend on a domain ontology; it has been
largely studied in the past and performing syntactic parsers have been released
by NLP researchers [10, 11]. So we can easily apply existing syntactic parsers to
our work, and use syntactic trees in our semantic parsing.

4.1 Instance classification
Instance classification is the classification of a phrase (a group of words) into an
instance class from the ontology. So we need to extract features to classify from
phrases. Word embedding has been shown to produce non-sparse and effective
features to represent the meaning of words [12].

4.1.1 Word Embedding

Therefore, we trained a word embedding model using as a training corpus the
knowledge corpus extracted before, which is a corpus of words sequences specific
to Minecraft, with the skip-gram model of the Word2Vec library [13]. We obtain
a model that produce similar vectors for words with a similar meaning in the
context of Minecraft.

Then, the embedding representation of a phrase using our Word2Vec model is

23

Figure 14: Embedding of the word “ore”

calculated as the average vector of the embedding representation of all words in
the phrase.
The challenging point is to create, from a word embedding model, a model that
embed correctly the meaning of a phrase. Our Word2Vec based phrase embed-
ding model does not include the different importance of the words in natural
language (e.g. in “a baby villager”, the word “villager” is more important to
catch the meaning of the instance described than the word “baby”). This differ-
ence between the importances of each word in a phrase is visible in the syntactic
tree that represents this phrase. The most important word is the root of the tree,
which is specified by its children nodes, and deepest nodes have least importance.
In other words, it could be interesting to include, in the embedding of a phrase,
the syntactic pattern followed by the words, which is a quite difficult task [14].
However, more specifically, we can keep an information on the syntactic relations
between the words by using the VecDCS library [15]. In this method, the embed-
ding representation of a phrase is calculated using the DCS tree representation
of the phrase that can be obtained from the syntactic tree (Figure 15).

Figure 15: DCS tree of the phrase “block of gold”

And the VecDCS embedding of the phrase can be calculated from the individual
embedding vectors of the different nodes of the DCS tree by the formula given in
Figure 16.

Therefore, we also trained a VecDCS model for Minecraft, using the extracted
knowledge corpus. We dispose of two different phrase embedding models that

24

Figure 16: Formula of the VecDCS embedding vector of a syntactic sub-tree

can be use to produce features for instance classification (Word2Vec model and
VecDCS model).

Figure 17: Two phrase embedding models

Our experiment in instance classification will, then, also be a way to study
the performance of each embedding model (the VecDCS model being expected to
produce more effective features).

4.1.2 Models for Instance Classification

We defined two baseline models for the instance classification step. The first one
uses a string similarity method (we refer to it as StringSim). It does not use
embedding models to classify words. We just compare the words of the phrase
to classify with the names of every instance classes in the ontology, and chose
the closest instance class as the prediction for the phrase. To calculate the string

25

similarity between two phrases (the name of an instance class of the ontology is
also a phrase/group of words), we use a combination of the Levenshtein distance
and the Hungarian algorithm (an alignment algorithm) to align words.
In details (see Figure 18), we create a matrix with as many rows as there are
words in the first phrase and as many columns as there are words in the second
phrase. We add an additional row and an additional column that correspond to
the empty word (so that we can align a word on the empty word and have a
different number of words in the two groups). Then we fill the cells of the matrix
with the Levenshtein distance between words of the two phrases. Finally, we
use a variation of the Hungarian algorithm to find the alignment of words that
minimize the sum of the distances. The variation allows aligning any number
of words (include no word) on the empty word. The result of this Hungarian
algorithm on the constructed matrix is the distance between the two phrases (see
Figure 18). If all words are aligned on the empty word (the cost of creating a
word is smaller than the transformation of a word of the other group to this
word), then there is no similarity between the two phrases and the distance in
set to infinite.

Figure 18: Distance between ’diamond block’ and ’block of diamond’

Note that even if the distance is infinite for distant phrases, we can fix a finite
upper limit on the acceptable distance between a phrase to classify and the names
of classes. Over this limit, or threshold, even if a class name is the closest to the

26

phrase among all classes, the phrase will not be classified with this class. This
threshold is the only parameter of the StringSim model.

The second baseline, Flat SVM model (Figure 19), uses the simple Word2Vec
embedding model to extract features from a phrase, and we classify the features
with a multi-class RBF kernel SVM classifier that outputs one of the 508 instance
classes of the ontology, or null if the group of words does not represent an instance.

Figure 19: Flat SVM model for instance classification

This model uses a C-SVC RBF kernel SVM (support vector machine) classifier
implemented in the LIBSVM library [16] (this is also the library that we used for
the other models using SVM classifiers in this work). This classifier is defined by
two parameters called c (for cost) and gamma (that defines the kernel function of
the classifier). Hence, the training of the Flat SVM model depends on the these
two hyper-parameters c and gamma.
During the training, for each class, we use positive and negative training samples.
The positive samples of a class are the positive examples of the training dataset
for this class and the negative samples of a class are the negative examples (not
an instance) of the training dataset and the positive examples of the other classes.

Then, we defined an improved model called Hierarchical SVM model (Fig-
ure 20). This is an improvement of the Flat SVM model in which we integrate
the ontology’s hierarchy of instances. We still use a phrase embedding model
to extract features from phrases. But we do not classify the features with one
multi-class SVM classifier. We classify features recursively, following the ontol-
ogy’s hierarchy, using one binary RBF kernel SVM classifier for each instance
class. To classify a phrase, we check at first if it belongs or not to the ENTITY
class and to the EVENT class, which are the two roots of the instances hierarchy,
using their respective binary classifiers. If and only if it is predicted as belonging

27

to a class, we check the belonging to the children classes (object, version, etc.)
and continue recursively. If the phrase doesn’t belong to any children class, the
recursion ends and the phrase is classified as the last predicted class. Note that
we can obtain several predictions using this process. However, we can rank the
several predictions by outputting the probabilities for each binary classifier’s pre-
diction. The probability of a prediction is defined as the geometric mean of the
probabilities output by each binary classifier in the recursion. For example, in
Figure 20, the probability of the prediction as pickaxe is:

P (Entity_336_pickaxe) =
(P (ENTITY) ∗ P (object) ∗ P (item) ∗ P (tool) ∗ P (pickaxe))1/5

Figure 20: Improvement: Hierarchical SVM model for instance classification

As for the Flat SVMmodel, this model uses C-SVC RBF kernel SVM classifiers,
so the training depends on two hyper-parameters c and gamma. Furthermore,
as we output the probabilities of binary classifiers’ predictions, we can define a
threshold on the probability to decide if yes or no a phrase belong to a class.
We can define a local threshold (we will refer to it as threshold) that must
be respected by the binary classifiers’ predictions at each step of the recursive

28

prediction, and a global threshold that must be respected by the geometric mean
of all probabilities on the whole prediction (we call it cumulative threshold, and
will refer to it as cumul for short). Then the training of the Hierarchical SVM
model depends on 4 hyper-parameters: c, gamma, threshold and cumul.
During the training, for each class, we use positive and negative training samples.
The positive samples of a class are the positive examples of the training dataset
for this class and for all the descendent classes in the ontology’s hierarchy. The
negative samples of a class are only the positive examples of the sibling classes
and the direct parent classes, except for the roots of the hierarchy (ENITITY_0
and EVENT_0) for which the negative samples are the negative examples (not
an instance) of the training dataset.

4.1.3 Tuning of Hyper-parameters

We tuned the hyper-parameters for each model by comparing their performance
in terms of F1-score (micro and macro values) on the training dataset for different
values of the hyper-parameters and by choosing the values that lead to the best
performance. While the StringSim model’s performance is measured using the
whole dataset for testing, the other models have to be trained, so we measured
their performance through a 2-1 cross-validation (2/3 training and 1/3 testing).

The results of the tuning for the StringSim model (Figure 21) shows that the
distance threshold, when set to a small value (strict similarity), can be useful to
increase the precision of the classification (ensure that the predictions are correct).
However, small values of the threshold decrease the recall of the classification,
because it penalizes the frequent classes that have a high lexical diversity. The
values of threshold = 1 (strict similarity) and threshold = 4 (soft similarity) for
the threshold have been kept for this baseline to do a comparison between the
several instance classification models.

For the Flat SVM model, we tuned c and gamma together by comparing the
performance of the model for different couples (c, gamma) (Figure 22).

We kept the values (c = 10000, gamma = 0.1) to optimize the performance.
For the Hierarchical SVM model, we made the assumption that we can tune c,

gamma independently from threshold and cumul because they do not affect the

29

Figure 21: Distance threshold tuning for the StringSim model

Figure 22: Hyper-parameters tuning for the Flat SVM model

same part of the model3 and it is far easier to tune couples of hyper-parameters
than tuples of 4 hyper-parameters. Then we tuned c and gamma first for de-
fault values of (threshold = 0.5, cumul = 0.5), and tuned threshold and cumul

afterwards with the best values for c and gamma (Figure 23).
From the results of the tuning for the Hierachical SVM model, we first chose
3The validity of this assumption is not evaluated in this study and should be part of future

works.

30

Figure 23: Hyper-parameters tuning for the Hierarchical SVM model

(c = 10, gamma = 1) to optimize the micro F1-score (the performance on fre-
quent classes of the ontology). We can notice that these values are not optimal
in term of macro F1-score (performance giving importance to rare classes), but
the loss on macro F1-score when optimizing micro F1-score is lower than the
loss on the micro F1-score in the case where we optimize the macro F1-score.
Furthermore, the value that is usually used for gamma is the inverse of the num-
ber of features used in the classification. As we use only one feature, which is
the normalized embedding vector of a phrase, this value of gamma = 1 was ex-
pected to be optimal a priori. Then we tune the threshold and the cumul for
(c = 10, gamma = 1). The couple (threshold = 0.75, cumul = 0.9) gives the best
performance for micro-F1-score and one of the best macro F1-score. Note that the
tuning is not done in the region threshold > cumul, because in this case, by def-
inition of the cumulative threshold, any prediction that respects the local thresh-

31

old at each step must necessarily respects the cumulative threshold, so cumul

is not a relevant hyper-parameter anymore. The diagonal threshold = cumul

then gives the result of the tuning for the threshold hyper-parameter alone. On
the contrary, when threshold < cumul, a phrase can be classified as an instance
class even if the prediction from a binary classifier was low at some step of the
recursion as long as the whole probability is high. Finally, we kept the values
(c = 10, gamma = 1, threshold = 0.75, cumul = 0.9). These values will be used
for the Hierarchical SVM model independently of the phrase embedding model
used to produce the features to classify, which is an other strong assumption that
would need to be verified in future works.

4.1.4 Experimental results for Instance Classification

We used the training dataset built before to train models (except StringSim that
does not require training), and to test them through a 2-1 cross-validation. We
calculated the micro F1-score and the macro F1-score for each model. Results are
presented in Table 7. The micro F1-score can be considered as the performance of
the model on frequent classes and the macro F1-score gives the same importance
to frequent and rare classes, so the difference between micro and macro F1-scores
gives an idea of the difference of performance between frequent and rare classes.

By comparing the two baselines (StringSim and Flat SVM model), we can see
that the Flat SVM model, that uses embedding features is more performing on
frequent classes, because frequent classes have more lexical diversity, and then
classifying the meaning of words is better than classifying the surface of words.
However, the Flat model uses only one SVM classifier for more than 500 classes,
and as a result, rare classes are not correctly learnt even if this model has the
best macro precision. This can be seen through its very low recall in Table 8, or
by looking at the confusion matrix of the classification in Figure 24.

But if we compare the Flat SVM model with the Hierachical SVM model when
using the Word2Vec phrase embedding model, we can see that we make a large
improvement on rare classes by using the hierarchy of instances, as the gap be-
tween micro and macro F1-score largely decreases. Still, it is not sufficient to

32

Model Micro F1 Macro F1
strict StringSim 0.423 0.810
(threshold = 1)
soft StringSim 0.574 0.765
(threshold = 4)
Flat SVM Model 0.719 0.556

(Word2Vec embedding)
Hierarchical SVM Model 0.791 0.761
(Word2Vec embedding)
Hierarchical SVM Model 0.869 0.855

(VecDCS embedding + context features)

Table 7: Experimental results for Instance Classification

Model Macro Precision Macro Recall
strict StringSim 0.929 0.719
(threshold = 1)
soft StringSim 0.715 0.823
(threshold = 4)
Flat SVM Model 0.955 0.392

(Word2Vec embedding)
Hierarchical SVM Model 0.801 0.724
(Word2Vec embedding)
Hierarchical SVM Model 0.896 0.817

(VecDCS embedding + context features)

Table 8: Precision and recall for Instance Classification

beat the String Similarity baseline in term of macro F1-score.
However, we could improve the performance of the Hierachical SVM model by
changing the embedding model used to extract features from the phrase to clas-
sify. Instead of using the phrase embedding model based on Word2Vec word
embedding alone, we use a combination of it with the more elaborate phrase
embedding model based on VecDCS word embedding. The phrase embedding

33

Figure 24: Confusion matrix of instance classification with the Flat SVM model

model based on VecDCS is used to extract a feature vector from the phrase to
classify, and the phrase embedding model based on Word2Vec is used to extract
a feature vector from the context of the phrase. To do so, we apply the Word2Vec
phrase embedding model on the bag of words constituted with the words located
at the nodes of the syntactic tree that are directly adjacent to at least one node
that is part of the phrase to classify. The concatenation of these two vectors
of features is used to classify the phrase. In this case, we use gamma = 0.5 as
hyper-parameter, as we use two different set of features. With this model, we
obtain the best performance for both micro and macro F1-scores. And if we look
at the Table 8, we can see that the good performance of the Hierarchical SVM
model is due to a good balance between precision and recall.

4.1.5 Conclusion on Instance classification

As a conclusion on instance classification, we have shown that:

• Word embedding models are useful in the classification of frequent instance
classes with high lexical diversity.

34

• Using the ontology’s hierarchy is useful to learn to classify correctly rare
instance classes.

• We can use elaborate features (VecDCS embedding features and context
features) to obtain the best performance on the instance classification task.

4.2 Relation classification
Relation classification is the classification of the syntactic paths of a syntactic tree
into relation classes from the ontology. Similarly to what we saw in the section
on word embedding, convert syntactic paths to their vector representation could
be an efficient way to produce features to classify with a SVM model.

4.2.1 Dependency Embedding

We need an embedding model for syntactic paths that will produce similar vector
representations for similar paths. The question is then, what are similar paths?
As syntactic paths are sequences of words and syntactic dependencies, similar
paths will be similar sequences, so it is logical to begin by embedding the elements
that compose the sequences: words and syntactic dependencies. We already have
a word embedding model, so we need to train a dependencyembedding model
that will produce similar vectors for similar dependencies. Contrary to words, for
which we can find synonyms, each dependency has a distinct syntactic role. How-
ever, some dependencies can be closer than others, such as advcl : when (when
condition) and advcl : if (if condition), which are closer than advcl : when and
advcl : to (consequence, or reversed condition). We can also notice the similar-
ity between single dependencies and bigrams of dependencies (e.g. nsubj and
nsubj_xcomp−1), so it can be useful to be able to embed both unigrams and
bigrams of dependencies.
To embed a dependency, or a bigram of dependencies, we used the skip-gram
model implemented in the Word2Vec library (syntactic paths being composed
from both words and dependencies, making our dependency embedding vectors
similar to word embedding vectors simplify the implementation of the syntactic
path embedding model). Training such a model only needs a corpus of depen-
dencies sequences (in other words, syntactic paths), so we parsed a part of the

35

knowledge corpus we extracted before with a syntactic parser, and constituted
a corpus of syntactic paths. We produced two syntactic dependency embedding
models, the first one embedding dependency unigrams, the other one embedding
dependency bigrams. For the second one, when constructing the training corpus
of syntactic paths, we divided dependency sequences by bigrams, in order to train
the embedding model on bigrams of dependencies.

Figure 25: Embedding of a syntactic dependency unigram

To construct a syntactic paths embedding model from a word embedding model
and a syntactic dependency embedding model, we begin by dividing the path into
two sequences, the sequence of words and the sequence of dependencies.
We calculate the embedding vector of the sequence of words by simply calculat-
ing the average vector of the embedding representations of all the words in the
sequence (the order of the sequence is not used). For the sequence of depen-
dencies, we calculate the average vector of the embedding representations of all
dependency unigrams in the path using the first embedding model (the order of
the sequence is not used), or of all dependency bigrams in the path using the
second embedding model (the order of the sequence is important here).
Then we concatenate the embedding representation of the sequence of dependen-
cies and the embedding representation of the sequence of words to obtain the
embedding representation of the path.

We finally dispose of two syntactic path embedding models, one that uses
dependency unigram embedding and does not encode the order of the sequence,
and an other that uses dependency bigram embedding and then integrates the
order of the sequence of dependencies in the syntactic path. If our purpose is
similar to the syntactic path embedding done in the work of M. Roth and M.
Lapata in 2016 [17], the technology used to construct the model in different. It
would then be interesting to compare both approaches in a future work.

36

Figure 26: Embedding of a syntactic path

In our syntactic path embedding models, we also added the possibility not to
consider the words in the syntactic path, in which case the path embedding
models only embed the sequence of dependencies (unigrams or bigrams).

4.2.2 Models for Relation Classification

First, we created a baseline that uses one binary SVM classifier for each relation
of the ontology, including the root RELATION of all relations (see Figure 27).
After extracting the features from the syntactic path we want to classify with our
path embedding model, we begin by testing if the path represent or not a relation
of our ontology by classifying it with the root RELATION binary classifier. If
the root relation’s classifier prediction is positive, we test for each relation class
in the ontology if the path belongs to the class or not by using the respective
binary SVM classifiers (the classification is then similar to the Hierarchical SVM
model for instances in the case of events that have no other hierarchy that the
common root). In the example of Figure 27), only the ingredient relation class is
predicted positively.

During the training, for each class, we use positive and negative training sam-
ples. In the case of the root relation binary classifier, we use all positive examples
of the training dataset as positive samples, and all negative examples of the
training dataset as negative samples. However, for any other class, the positive
samples are the positive examples of the training dataset for this class and the
negative samples are the positive examples of the other classes. Using a classifier
for the root relation as a first step of the classification instead of testing directly
all the relation classes is a way the reduce the number of predictions done by
SVM classifiers, and it allows to train relation classes with less negative samples,

37

Figure 27: SVM model for relation classification

as the non-relation paths are eliminated by the root classifier at the first step.
We built an improvement of the previous model, by integrating the ontology’s

constraints into the model (see Figure 28). Indeed, constraints provide useful
information when classifying a relation, so we added a constraints verification
step at the top of the model. In other words, before classifying the features of a
syntactic path between two entities, we check what relation classes are possible
candidates for the relations between these two instances. In the example of
Figure 28, a relation between “crafted” and “wood planks” cannot be _effect
or type_of, but only crafted or ingredient. So it is theoretically useless to check
if the syntactic path belong to other classes than crafted and ingredient.

As for the baseline, during the training, for any class except the root, the
positive samples are the positive examples of the training dataset for this class,
however the negative samples are only the positive examples of the other classes
for which this class was also a candidate. The constraints verification step then
allows to reduce the number of negative samples even more, which speeds up the
training.
For each of the two models, we can use either the unigram-based syntactic path
embedding model or the bigram-based syntactic path embedding model to pro-
duce the features to classify, and for each embedding model, we can consider or
not the words of the syntactic paths. In the following section, we will compare
both models, but also the difference in performance for each model depending on

38

Figure 28: Improvement: SVM model with constraints for relation classification

the syntactic path embedding model that is used to extract features.
Such as the Hierarchical SVM model for instance classification, both relation clas-
sification models use C-SVC RBF kernel SVM classifiers, so the training depends
on two hyper-parameters c and gamma. Furthermore, we output the probabilities
of binary classifiers’ predictions, so we can define a threshold on the probability
to decide if yes or no a syntactic path belongs to a relation class. And as the
prediction is done in two steps (root classifier and relation classifier), we defined
a local threshold (threshold) that must be respected by any binary classifier, and
a global threshold that must be respected by the geometric mean of the probabil-
ities at the two steps of the prediction (we call it cumulative threshold, cumul).
Then the training of both models depends on 4 hyper-parameters: c, gamma,
threshold and cumul.

4.2.3 Tuning of Hyper-parameters

As for the instance classification Hierarchy SVM model, we made the assumption
that we can tune c, gamma independently from threshold and cumul. We also
made the assumption that the tuning can be done only ones for both models as

39

the difference is in the constraints verification step and not in the SVM classifiers.
Then we tuned c and gamma first for default values of (threshold = 0.2, cumul =

0.2), and tuned threshold and cumul afterwards with the best values found for c
and gamma.

Figure 29: Hyper-parameters tuning for the Relation Classification models

From the results of the tuning, we first chose (c = 10000, gamma = 0.5) to
optimize both micro and macro F1-score. Then we tune the threshold and the
cumul for (c = 10000, gamma = 0.5). For both micro and macro F1-scores, the
couple (threshold = 0.1, cumul = 0.1) gives the best performance. Note that
threshold = cumul means that cumul is a useless hyper-parameter as it will
always be respected. Indeed, the geometric mean of two probabilities that must
be higher than threshold will also be higher than threshold, and then higher
than cumul. This is also the reason why the tuning is not done in the region
threshold > cumul. Finally, we kept the values (c = 10, gamma = 1, threshold =

40

0.1, cumul = 0.1).

4.2.4 Experimental results for Relation Classification

We used the training dataset built before to train and to test our relation clas-
sification models (through 2-1 cross-validation). The result of this experiment in
presented in Table9.

Model Micro F1 Macro F1
SVM Model 0.496 0.447

no constraints, dependency unigrams
SVM Model 0.501 0.456

no constraints, dependency bigrams
SVM Model 0.767 0.789

with constraints, dependency unigrams
SVM Model 0.792 0.791

with constraints, dependency bigrams
SVM Model 0.702 0.638

with constraints, words and dependency bigrams

Table 9: Experimental results for Relation Classification

This experiment confirms the positive impact of using constraints of the on-
tology in the relation classification model. Indeed, using constraints reduces the
number of possible labels, so it also reduces the number of possible classification
errors. The improvement is largely visible by comparing the confusion matrices
of the models without and with constraints (Figure 30)
An other interesting result is that using a constraints verification step in the
model implies that we do not need to train the binary SVM classifiers by using
the samples of other relation classes as negative samples if the two relations do
not link the same instance classes. This results in a faster training, as we reduce
the number of negative samples that are necessary.
We can also observe that using the bigram-based syntactic path embedding model
to extract the features slightly increases performance, which shows that the order

41

Macro Macro
Model Precision Recall

SVM Model 0.444 0.450
no constraints, dependency unigrams

SVM Model 0.474 0.440
no constraints, dependency bigrams

SVM Model 0.884 0.713
with constraints, dependency unigrams

SVM Model 0.871 0.725
with constraints, dependency bigrams

SVM Model 0.862 0.506
with constraints, word and dependency bigrams

Table 10: Precision and recall for Relation Classification

in the sequence of dependencies is important.
However, using both the words and the syntactic dependencies of the path to clas-
sify in the features is less performing than using the dependencies only. This can
be explained by two factors. First, we are considering here the constrained SVM
model in which the number of candidates in the classification in very limited.
Such a small number of possible candidates may explain that the dependencies
alone are sufficient to make the distinction between these few candidates, and it
may be the reason why performance does not increase when using the words of
the path. Secondly, we are working with very low resource, and our training set
is small. Then, there may be enough samples to learn the typical syntax used
by each relation, but not enough to learn the diversity of words that can be used
with this syntax. A further study with a larger training dataset might show some
improvements in using words in the syntactic paths classification, but as our pur-
pose is to work with low resource, this result encourages to develop models that
use the information of words more efficiently, without a need to increase the size
of the training dataset.
Looking at the Table10, we can see that the main weakness of our relation clas-
sification models is the low recall of the process. As we are working with low

42

resource and few training samples, making improvements on the recall without
increasing the number of costly expert annotations would be valuable. We will
see in the next section how we can increase the size of the training dataset with-
out doing expert annotations of relations by using crowd-sourcing.

Figure 30: Confusion matrices of relation classification using dependency bigrams
features without constraints (left) and with constraints (right)

We made a second experiment to show the impact of the quality of the syntactic
information that is classified. We saw that our relation classification models
classify syntactic paths that are obtained from sentences with syntactic parsers.
In this experiment, we use the same relation classification model (SVM model
with constraints, using either dependencies unigrams or bigrams, but not words)
and the same training dataset, but we use two different syntactic parsers to obtain
the syntactic paths from which we extract the features to classify (see Table 11).

The two parsers we use are the Stanford Parser [10] and the Parsey McParseface
Parser [11]; the last one have been shown to achieve state-of-the-art performance
on the syntactic parsing task.
As a result, we observe a significant difference in the performance of the relation
classification model, with better performance when using the Parsey McParseface
parser to obtain the syntactic paths. This is mainly due to the fact that even
a small difference in the syntactic tree of a sentence can lead to big changes
in the syntactic paths and make them more difficult to classify correctly with
our relation classification models. Therefore, using a syntactic parser that avoid

43

Model Micro F1 Macro F1
SVM Model

with constraints, dependency unigrams 0.767 0.789
(Parsey McParseface Parser)

SVM Model
with constraints, dependency bigrams 0.792 0.791

(Parsey McParseface Parser)
SVM Model

with constraints, dependency unigrams 0.731 0.774
(Stanford Parser)

SVM Model
with constraints, dependency bigrams 0.774 0.784

(Stanford Parser)

Table 11: Impact of the syntactic information quality on Relation Classification
performance

mistakes has a significant positive impact on the relation classification model’s
performance.

4.2.5 Conclusion on Relation classification

As a conclusion on relation classification, we have shown that:

• A dependency embedding model can be trained from the extracted corpus
(after parsing it with a syntactic parser) and allows to classify syntactic
paths.

• Using the ontology’s constraints increases performance and speed up the
training.

• Using dependency bigrams instead of unigrams, and then taking into ac-
count the order of the dependencies in the syntactic path slightly increases
performance.

• Using both words and dependencies from the paths to classify decreases

44

performance, which shows that we must re-think the way we are using the
word information in the path classification.

• The quality of the syntactic information that we classify in the Relation
classification step has a significant impact on performance.

4.3 Crowd-Sourcing
We saw in the previous sections that working with low resource and small train-
ing datasets implies a low recall in the classifications. If we have been able to
generate automatically a lot of instances samples to train the instance classifica-
tion models by using the anchors of the websites we used to extract knowledge
about Minecraft, we do not dispose of such a way to generate easily and cheaply
training samples for the relation classification yet. This results in a quite low re-
call in the relation classification step of the semantic parsing. One solution is to
use crowd-sourcing to obtain cheap annotations made by non-expert annotators
on the web to increase the size of the training dataset for relation classification.
However, annotating relations between two instances in a text is a difficult task
that requires knowing the characteristics of each relation class in the ontology.
To make non-expert annotators to realize such an annotation, we need to simplify
the annotation task. What we did is that for each relation sample to be anno-
tated, we generated automatically a short list of propositions in natural language
(English) that are easy to understand for human annotators. When annotating
the relation between two already automatically classified instances, we begin by
building the list of all possible relation class that can be used to link these two
instances together. These lists are always rather short, between 1 and about 5
candidates, by construction of the ontology. Then, after having shown the sen-
tence to the annotator, we show him, for each possible relation class, an English
proposition that asserts that the relation is true in the context of the sentence
and ask him to choose the only proposition that is true (the ontology is designed
in a way that there is always at most only one relation between two instances).
In the case where there is no relation between the couple of instances (this is a
negative sample), the annotator has the possibility to answer that none of the
propositions is true. We also ask to the annotator to confirm that the instances

45

have been correctly classified before displaying the propositions in order to avoid
wrong annotations of the relation, as wrong instances may lead to a wrong list
of possible relation candidates. Each sample is annotated by 5 different annota-
tors, and the most reliable answer is added to the training dataset. We obtained
210 distinct relation samples (158 positive examples, and 52 negative examples)
for 9 different relation classes. This crowd-sourcing has been realized with the
CrowdFlower platform4 (example in Figure 31).

Figure 31: Example of crowd-sourcing annotation with CrowdFlower

We evaluated the quality of the annotated data by comparing the performance
of the relation classification cross-validation on the crowd-sourcing annotations
to the performance of cross-validation on expert annotations (see Table 12).

If the performance of the cross-validation on crowd-sourcing annotations is
slightly below the performance on expert annotations, we can nonetheless con-
clude that crowd-sourcing can be a good way of increasing the size of the training
dataset for relation classification when using the annotating method described
before to make the annotation accessible to non-expert annotators.

4 www.crowdflower.com

46

http://www.crowdflower.com/

Model Micro F1 Macro F1
SVM Model

with constraints, dependency bigrams 0.792 0.791
(expert annotations only)

SVM Model
with constraints, dependency bigrams 0.763 0.719

(crowd-sourcing only)
SVM Model

with constraints, dependency bigrams 0.780 0.754
(expert + crowd-sourcing)

Table 12: Relation Classification performance on crowd-sourcing annotations

5 Question Answering
We dispose of a semantic parser specific to the domain of Minecraft. This semantic
parser output knowledge graphs from English sentences, so an interesting issue
would now be to study how we can use knowledge graphs to do question answering
in Minecraft, and what kind of logical reasoning can be done on knowledge graphs
to retrieve answers to difficult questions.
This section has for only goal to expose some ideas about a method that can
be used to do QA in Minecraft by using the knowledge graphs, and it does not
provide any proof or result. Such results could be obtained in a future study,
by applying the proposed QA algorithm to the question corpus that have been
extracted.

5.1 Knowledge graphs and question graphs
We begin with the observation that the semantic parser we built to convert En-
glish sentences about Minecraft into knowledge graphs can be as well on the
questions. In the short study of this section on question answering, we will divide
questions into two categories: question-words questions and yes/no questions that
do not contain question words.
When applying the semantic parser to a yes/no question (Figure 32), we can see

47

that the question graph is almost identical to the knowledge graph of the corre-
sponding assertion. We will then be able to answer yes/no questions by looking
for knowledge graphs similar to the question graphs in the knowledge database.
The presence of such a similar knowledge graph giving the answer “Yes”, and the
absence giving the answer “No”.

Figure 32: Example of yes/no question graph and the corresponding assertion
graph

When applying the semantic parser to a question-word question (Figure 33),
we can see that the question graph is similar the knowledge graph containing the
answer, with the difference that the question graph has an unknown instance
node in the place of the sub-graph that represents the answer. We will then be
able to answer question-words questions by looking in the knowledge database for
compatible sub-graphs that can be substituted to the unknown instance node.

5.2 QA algorithm
Several studies have been done on using knowledge graphs to do question answer-
ing. Some of them developed methods to retrieve answers from graphs without
the need of an ontology, and can be done in open-domain [18, 19] because they do
not require to convert both question and knowledge to semantic graphs. These
algorithms provide an interesting alternative to our method.
However, in the case of our study, we are more interesting in the works that
make use of both question graphs and knowledge graphs, and developed methods

48

Figure 33: Example of question-word question graph and the knowledge graph
of its answer

to retrieve answers by graph comparison (common paths and overlaps) between
the questions graphs and the knowledge graphs containing candidate answers
[20, 21, 22]. The algorithm we describe in this section (Algorithm 1,2) is closely
related to these last works.

For yes/no questions, answering a question consists in comparing the question
graph with every knowledge graph in the knowledge database. If any knowledge
graph overlaps with the question graph more than a fixed threshold, the answer
is “yes”, otherwise it is “no”.
In the case of question-words questions, retrieving answers is done in two steps.
In the first step we retrieve candidates answers. To do this, we consider the path
between the root and the unknown instance node in the question graph. Any
knowledge graph that contains this path provides a candidate answer, which is the
sub-graph at the end of this path. Then, in the second step, for each candidate
answer, we replace the unknown instance node by the candidate answer sub-
graph, and we compare the modified question graph with the knowledge graph
the candidate answer is extracted from. If the overlaps exceeds a fixed threshold,
the candidate answer is validated.
Note that the obtained answers are semantic graphs, so it is possible to do logical
reasoning, by combining different pieces of knowledge from different knowledge
graphs to answer. To do this, after having retrieved the answer, we convert it
into a new question graph by adding an unknown instance to it and we repeat
the algorithm to retrieve answers. An example in given the Appendix A.

49

Algorithm 1 QA algorithm - step 1
procedure RetrieveCandidates(questionGraph,knowledgeGraphCollection)

candidates← []

if questionGraph is yesNoQuestion then
for all knowledgeGraph in knowledgeGraphCollection do

if questionGraph.root in knowledgeGraph.nodes then
candidate[0]← “Yes”
candidate[1]← questionGraph

candidate[2]← knowledgeGraph

candidates.append(candidate)
else if questionGraph is qWordQuestion then

rootIndex← questionGraph.root

qWordIndex← questionGraph.index(qWord)
path← questionGraph.path(rootIndex, qWordIndex)
for all knowledgeGraph in knowledgeGraphCollection do

if path in knowledgeGraph.paths then
candidateNode← knowledgeGraph.paths(path).end
answer ← candidateNode.subgraph

candidate[0]← answer

candidate[1]← questionGraph.replace(qWordIndex,answer)
candidate[2]← knowledgeGraph

candidates.append(candidate)
return candidates

Algorithm 2 QA algorithm - step 2
procedure ValidateAnswers(candidates)

for all candidate in candidates do
answer ← candidate[0]

modifiedQuestionGraph← candidate[1]

originKnowledgeGraph← candidate[2]

if overlap(modifiedQuestionGraph,originKnowledgeGraph)>
threshold then

Print “Answer: ”, answer.text
Print “Justification: ”, originKnowledgeGraph.text

50

6 Conclusion
In this work, we presented a study about semantic parsing with very low an-
notated resource in the domain of the video game Minecraft. We described the
methods used to collect data about the domain and the classification models that
we designed to build a semantic parser. We have shown that such a semantic
parser can be performing in the restricted domain if we make good use of the data
we created, in particular by using the ontology’s characteristics, and that it can
be trained with only a few manually annotated resource and can be completed
with automatically generated samples or through crowd-sourcing annotations.
We also described a question answering algorithm that allows logical reasoning
on the knowledge graphs output by the semantic parser to answer non-factoid
questions.
Our study brings two main contributions when compared to other works describ-
ing methods to build semantic parsers for limited domains [23]. First, we explored
various ways to increase the parsing performance by acting on both the size of
the training dataset with several methods (web anchors, crowd-sourcing), and
the classification models (integrating ontology in the classification step and ex-
tracting relevant features). And secondly, our semantic parser output semantic
graphs that are immediately usable by a QA algorithm to answer even difficult
questions using logical reasoning.
Thus, we believe that our work is then a first step in answering to how to effi-
ciently build a semantic parser with very low resource and use it to do advanced
question answering in restricted domains.

As future works, we believe that some work should be done to improve the
relation classification step of the semantic parsing. Indeed, the recall still has to
be reduced, which implies a lot of manual annotations with the current methodol-
ogy. One interesting problematic could be to answer the question: can we create
training data automatically from available resource, as we did with anchors for
instance classification? We could for example imagine that we look for typical
couples of instances that can only be linked by one possible relation in a natural
language corpus to create automatically relations samples.
We think that some work should also be done to reduce even more the quantity

51

of manual work needed to build the ontology of the restricted domain. There
have been some interesting works on how a system can learn to produce knowl-
edge graphs without any ontology [19] that have shown that the performance
are particularly good in restricted domains. Or may even be possible to limit
semantic parsing to instance classification and do question answering directly on
syntactic trees [22]. Then, a deeper study should be done on the application of
the knowledge graphs produced by semantic parsing on question answering in
Minecraft. The algorithm should be improved by inspiring from other studies
on graph-based question answering systems [20, 21] and tested on the corpus of
questions that has already been collected.
Finally, it would be interesting to use our models to train and test a semantic
parser and a QA system on other low resource restricted domains [24] such as
technical fields (medical domain, industrial domains, etc.), customer services, or
other video games.

52

Acknowledgements
I would first like to express my gratitude to my supervisor Professor Kentaro Inui
from the Graduate School of Information Sciences at Tohoku University. Pro-
fessor Inui has been of great help, not only for supervising my research, but also
for my student life in general. My master thesis in Tohoku University would not
have been possible without him.
I am also deeply indebted to Research Assistant Professor Ran Tian and Asso-
ciate Professor Naoaki Okazaki for their continuous guidance over the duration
of my research. I would like to thank them for their implication, and for the time
they spent giving me the advices and inspiration that oriented my work.
I would like to thank Professor Yoshifumi Kitamura and Professor Tetsuo Ki-
noshita who were involved in the validation of this research project.
Furthermore, I would like to thank the people from the Incoming Student Ex-
change Section and the JASSO scholarship program very deeply for their kindness
and their involvment. The JASSO scholarship really allowed me to integrate bet-
ter in the Japanese society, as I could participate to more events and sometimes
travel with friends to discover new beautiful places in Japan.
Finally, I would also like to thank all the Inui-Okazaki laboratory members, pro-
fessors, researchers and students, for their valuable comments and support, and
for having created together a very pleasant working environment.

53

References
[1] Jonathan Berant and Percy Liang. Semantic parsing via paraphrasing. In

ACL (1), pages 1415–1425, 2014.

[2] Xuchen Yao. Lean question answering over freebase from scratch. In HLT-
NAACL, pages 66–70, 2015.

[3] SRK Branavan, Nate Kushman, Tao Lei, and Regina Barzilay. Learning
high-level planning from text. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics: Long Papers-Volume 1,
pages 126–135. Association for Computational Linguistics, 2012.

[4] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The
malmo platform for artificial intelligence experimentation. In International
joint conference on artificial intelligence (IJCAI), page 4246, 2016.

[5] Akira Fujita, Akihiro Kameda, Ai Kawazoe, and Yusuke Miyao. Overview
of todai robot project and evaluation framework of its nlp-based problem
solving. World History, 36:36, 2014.

[6] Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learn-
ing to automatically solve algebra word problems. Association for Compu-
tational Linguistics, 2014.

[7] Dipendra Kumar Misra, Kejia Tao, Percy Liang, and Ashutosh Saxena.
Environment-driven lexicon induction for high-level instructions. In ACL
(1), pages 992–1002, 2015.

[8] Ran Tian, Yusuke Miyao, and Takuya Matsuzaki. Logical inference on
dependency-based compositional semantics. In ACL (1), pages 79–89, 2014.

[9] Panupong Pasupat and Percy Liang. Compositional semantic parsing on
semi-structured tables. arXiv preprint arXiv:1508.00305, 2015.

[10] Danqi Chen and Christopher D Manning. A fast and accurate dependency
parser using neural networks. In EMNLP, pages 740–750, 2014.

54

[11] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro
Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally nor-
malized transition-based neural networks. arXiv preprint arXiv:1603.06042,
2016.

[12] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositional-
ity. In Advances in neural information processing systems, pages 3111–3119,
2013.

[14] Sho Takase, Naoaki Okazaki, and Kentaro Inui. Modeling semantic com-
positionality of relational patterns. Engineering Applications of Artificial
Intelligence, 50:256–264, 2016.

[15] Ran Tian, Naoaki Okazaki, and Kentaro Inui. Learning semantically
and additively compositional distributional representations. arXiv preprint
arXiv:1606.02461, 2016.

[16] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology (TIST),
2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/
~cjlin/libsvm.

[17] Michael Roth and Mirella Lapata. Neural semantic role labeling with de-
pendency path embeddings. arXiv preprint arXiv:1605.07515, 2016.

[18] Ahmad Aghaebrahimian and Filip Jurcıcek. Open-domain factoid question
answering via knowledge graph search.

[19] Ben Hixon, Peter Clark, and Hannaneh Hajishirzi. Learning knowledge
graphs for question answering through conversational dialog. In HLT-
NAACL, pages 851–861, 2015.

55

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[20] Diego Mollá and Menno Van Zaanen. Learning of graph rules for question
answering. In Proceedings of the Australasian Language Technology Work-
shop, volume 92, 2005.

[21] Diego Mollá. Learning of graph-based question answering rules. In Proceed-
ings of the First Workshop on Graph Based Methods for Natural Language
Processing, pages 37–44. Association for Computational Linguistics, 2006.

[22] Helena Gómez-Adorno, Grigori Sidorov, David Pinto, and Alexander F Gel-
bukh. Graph based approach for the question answering task based on en-
trance exams. In CLEF (Working Notes), pages 1395–1403. Citeseer, 2014.

[23] Yushi Wang, Jonathan Berant, Percy Liang, et al. Building a semantic parser
overnight. In ACL (1), pages 1332–1342, 2015.

[24] Diego Mollá and José Luis Vicedo. Question answering in restricted domains:
An overview. Computational Linguistics, 33(1):41–61, 2007.

56

Appendix

A Question Answering: example of logical rea-
soning on knowledge graphs

Figure 34: Question graph

Figure 35: Axiom

57

Figure 36: Piece of knowledge

Figure 37: Logical reasoning to retrieve the answer

58

List of Publications

International Conferences Papers
• Corentin Dumont, Ran Tian, and Kentaro Inui. question answering with

logic specific to video games. Language Resources and Evaluation Confer-
ence, 2016.

Other Publications
• Corentin Dumont, Ran Tian, and Kentaro Inui. An ontology for question-

answering on minecraft. The Association for Natural Language Processing,
2016.

59

	Introduction
	Case study: Minecraft
	Minecraft
	Why Minecraft?

	Collect data about Minecraft
	Knowledge corpus
	Question corpus
	Can the questions be answered by the knowledge corpus?

	Minecraft Ontology
	Can our meaning representation express enough information?

	Dataset
	Conclusion on the data collection

	Semantic Parsing
	Instance classification
	Word Embedding
	Models for Instance Classification
	Tuning of Hyper-parameters
	Experimental results for Instance Classification
	Conclusion on Instance classification

	Relation classification
	Dependency Embedding
	Models for Relation Classification
	Tuning of Hyper-parameters
	Experimental results for Relation Classification
	Conclusion on Relation classification

	Crowd-Sourcing

	Question Answering
	Knowledge graphs and question graphs
	QA algorithm

	Conclusion
	Acknowledgements
	Appendix
	Question Answering: example of logical reasoning on knowledge graphs

