Comparison of Utterance Generation Methods for Artificial Second Language Tutor

<u>Taku Nakamura</u>[†], Rafal Rzepka^{††}, Kenji Araki^{††}, Kentaro Inui[†]

[†]Tohoku University, ^{††}Hokkaido University

ESL learning

- Japanese ESL (English as a Second Language) learners have **limited opportunities to use English** [1]
- A possible solution: **artificial language tutor** Chat system as a
 - language acquisition supporter
 - conversational partner

^{• [1]} Paul Doyon. Shyness in the Japanese EFL class: Why it is a problem, what it is, what causes it, and what to do about it. The Language Teacher, 24(1):11-16, 2000.

Artificial language tutor

- Final goal
 - Build an attractive artificial tutor for language learning
 - An ideal example
 - User: "I'm college student".

 - System: "I'm a college student, I see! I'm interested in learning. What is your major?"
 - Conversational contents need to be controlled and **related** to user utterances

Difficulties in artificial language tutors

- Responses must be linguistically correct
- Balance between interesting and harmful responses
 - Knowledge from the Web or users can interests learners, but can contain improper or discriminative expressions

This work

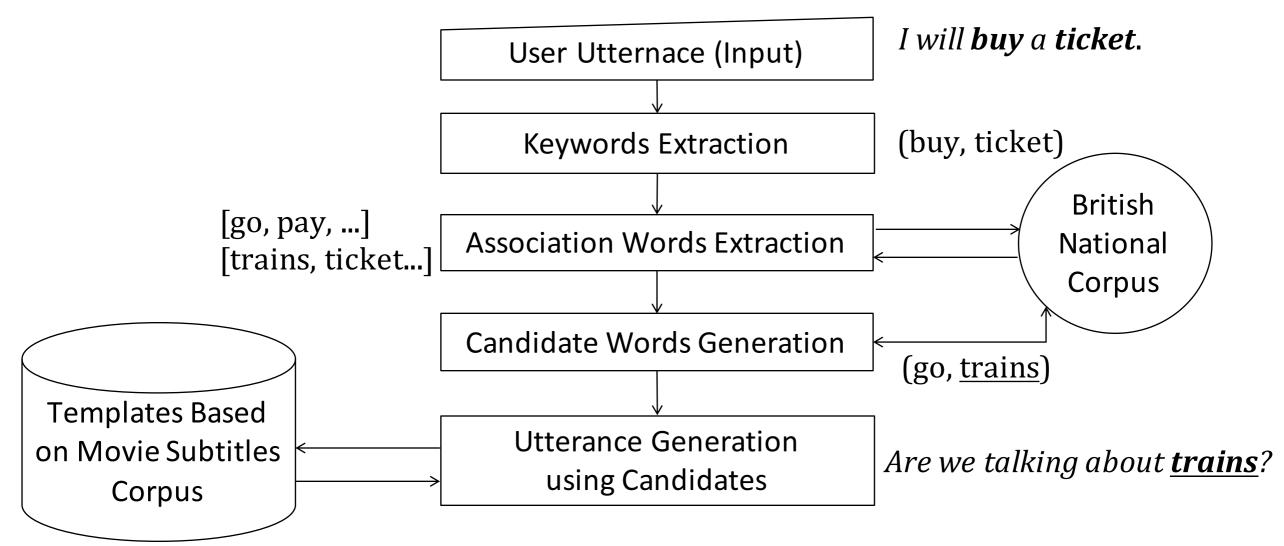
- Proposes prototype methods of generating responses;
 - Affected by leaners' utterances
 - Based on templates and comparatively reliable knowledge resources
- Compares generated utterances with those of traditional chat systems
- Shares findings on user preferences for correction styles

System for language learning

- CSIEC (Computer Simulation in Educational Communication) system [2]
 - Multiple functions for English learning
 - Includes a chatting partner (chatbot)
 - Based on databases of knowledge
 - Shortage of topics in system utterances

^{• [2]} Jiyou Jia. CSIEC: A computer assisted English learning chatbot based on textual knowledge and reason- ing. Knowledge-Based Systems, 22(4):249-255, 2009.

Providing conversational topics in our approach


• Assumption:

Input-related words /phrases can offer chatting topics

e.g. 'movies' → 'actors', 'watching', 'eating popcorn'

- Proposed methods use
 - Word associations by co-occurrence frequency
 - Relations in an ontology (ConceptNet)

<u>Co-occurring Action Phrases-based Method</u>
uses **verbs** and **nouns** frequently co-occurring with
those in an input utterance in sentences in the corpus

- Compared utterances from CoAPM and ELIZA* responded to 20 inputs in a questionnaire
 - To see how learners react to each response

*python implementation of ELIZA by Jez Higgins (http://www.jezuk.co.uk/cgi- bin/view/ software/eliza).

Evaluation settings

- Input utterances: selected from test takers' utterance in the English interview test transcription The NICT JLE Corpus (<u>https://alaginrc.nict.go.jp/nict_jle/index_E.html</u>)
- Evaluators: Five Japanese college students

(four males in their early 20s, one male in his early 30s)

- Criteria
 - Grammatical naturalness
 - Semantic naturalness
 - Motivation to keep studying
- Assessed in 5-point scale (1: poor +> 5: excellent)

CoAPM evaluation results

• Average scores

	CoAPM	ELIZA
Grammatical naturalness	3.50 (1.25)	3.74 (1.45)
Semantic naturalness	2.20 (1.43)	2.25 (1.49)
Motivation to keep studying	2.17 (1.37)	2.39 (1.46)

• (): Standard deviations of scores among evaluators

• Original criteria were given in Japanese language

Example erroneous outputs and analysis

- Input: "In free time, I like to <u>read books</u>."
 - CoAPM: "Does <u>chapter</u> read?"
 - ELIZA: "Very interesting."
- Input: "What did you <u>watch</u>?" [watch: verb]
 - CoAPM: "Are we talking about <u>watch</u>?" [watch: noun]
 - ELIZA: "Please consider whether you can answer your own question."
- Observations:
 - **Confirming style** of ELIZA is preferred in a short run conversation for language acquisition purpose
 - Follow-up questions are important for tutoring task

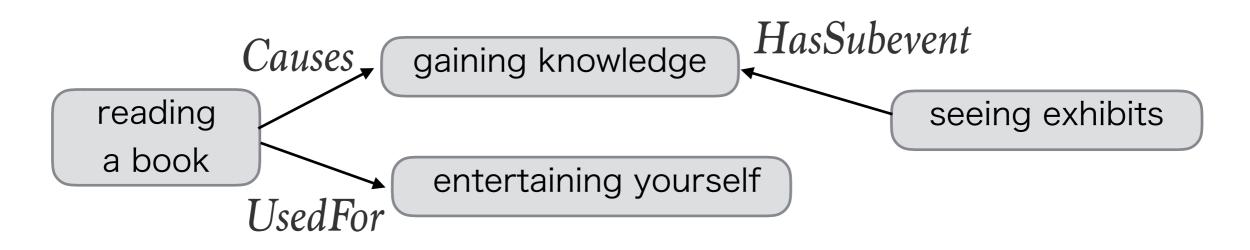
Input-related but linguistically incorrect due to insufficient templates

Incorrect POS analysis; should be treat as a verb

Preliminary survey of error correction methods

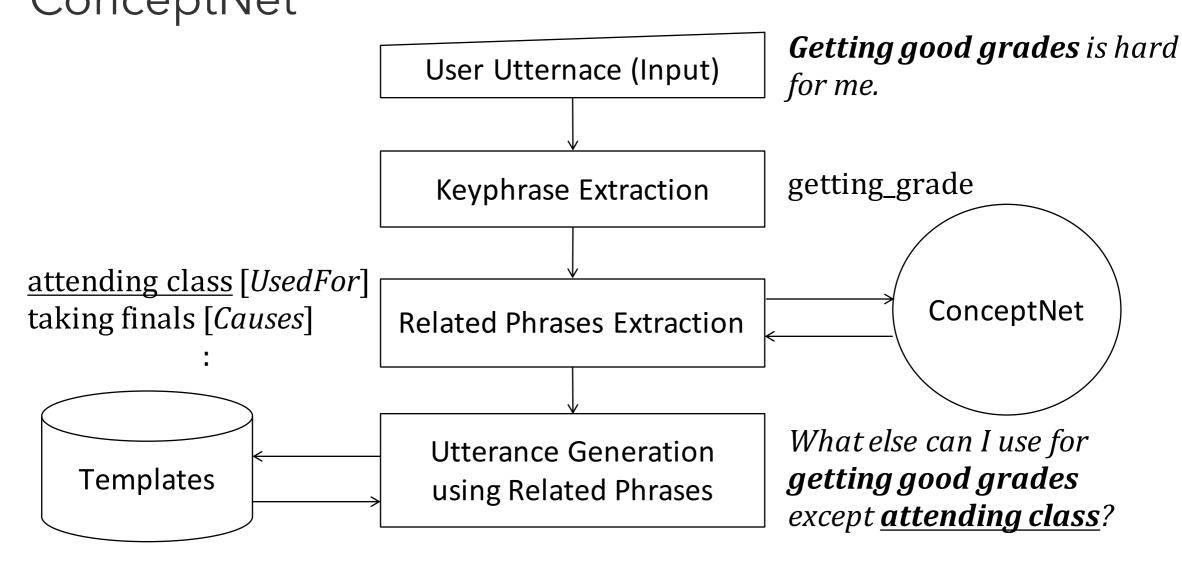
- For future English error suggesting function
- Questionnaire on preferences for correction methods in dialogue
- Presented three types of correction examples to an erroneous input: *"I spend time listening music."*
- Subjects: The same five Japanese college students

Preliminary survey of error correction methods

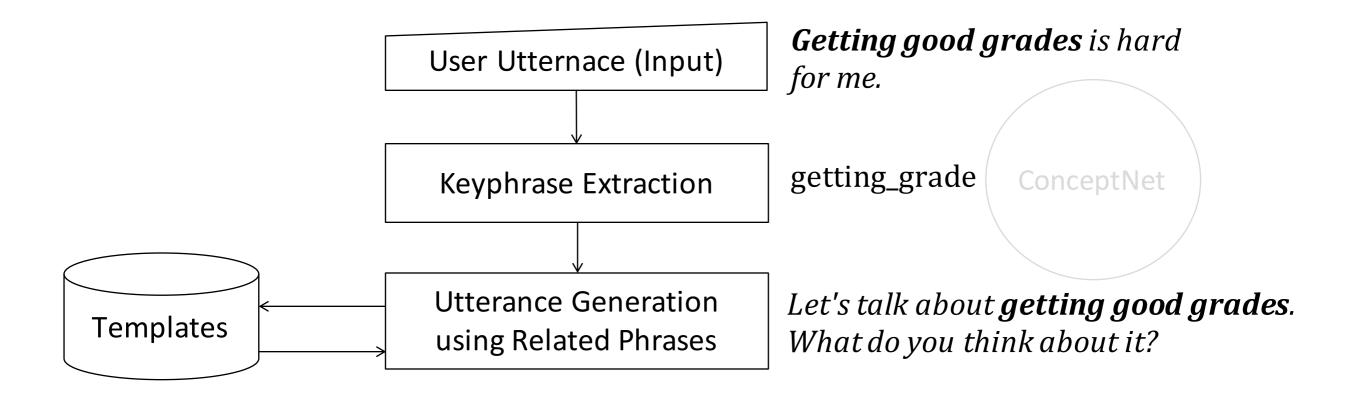

• Corrections in each method to the erroneous input: *"I spend time listening music."* and the questionnaire results

Correction methods	Examples	Respondents
Explicit-correction	"No, listening to"	2 / 5 (40%)
Recast	"listening to"	2 / 5 (40%)
Prompt	"listening"	1 / 5 (20%)

• "Explicit-correction" and "Recast" were preferred in this small survey


Utilization of ontology and phrases in a specific form

- ConceptNet: general human knowledge resource
 - Helps to deal with ongoing topics


- Utilize relations and natural language expressions
- Handle <u>"- ing (gerund form of verb) + noun</u>" phrases
 - Focus on utterance contents

 <u>Related Action-Phrases based Method</u> uses [*relations*] between "-ing + noun" form phrases in ConceptNet

CiAPM overview

- Cited Action Phrases-based method
 - To assess effectiveness of repeating approach
 - Uses "-ing + noun" phrases in the input utterance

Templates for RAPM and CiAPM

- Templates for any relation <u>RAPM-NONREL</u> and <u>CiAPM</u>
 - "Talking about [V-ing N (related phrase)]... What is your opinion on that topic?"
 - "Speaking of that, what do you think about [V-ing N (related phrase)]?"
- Templates for specific relations <u>RAPM-REL</u>
 - relation: *RelatedTo*

"Often [V'-ing N' (phrase from input)] and [V-ing N (related phrase)] are a good combination. What do you think?"

• relation: *HasProperty*

"What about [V-ing N (related phrase)] while [V'-ing N' (phrase from input)]?"

([V-ing N] denotes "-ing (verb in gerund form) + noun" phrase)

 Compared utterances from RAPM (-NONREL / - REL), CiAPM and ELIZA, ALICEBOT responded to 10 inputs in a questionnaire

- Input utterances: randomly selected from test takers' utterance (containing at least one "-ing + noun" phrase) in the English interview test transcription (The NICT JLE Corpus)
- Evaluators: Six Japanese college students

(three undergraduates and three graduates in their 20s, science majors)

(A) Will to continue the conversation

- (B) Semantical naturalness of dialogue
- (C) Appropriateness in English conversation practice
- (D) Vocabulary richness
- (E) Knowledge richness

(F) Human-likeness of the system

- 5 point scale (1: poor + 5: excellent)
- Original criteria were given in Japanese language

RAPM / CiAPM evaluation results

• Average scores (and standard deviations among evaluators)

	(A) Continuity	(B) Semantic	(C) Practice	(D) Vocabulary	(E) Knowledge	(F)
CiAPM	3.10	3.12	3.36	2.98*	3.16	Humanity 3.10
	(1.09)	(1.11)	(1.09)	(0.94)	(0.94)	(0.95)
RAPM-	3.08	2.82	3.16	3.20*	3.02	2.88
NONREL	(1.12)	(1.09)	(1.14)	(0.91)	0.95)	(1.08)
RAPM-REL	3.08	2.70	3.12	3.18*	2.98	2.96
	(1.21)	(1.17)	(1.20)	(0.89)	(1.05)	(1.23)
ELIZA	2.36	2.92	2.56	2.30	2.54	2.78
	(1.19)	(1.28)	(1.21)	(1.16)	(1.16)	(1.21)
ALICEBOT	2.80	2.66	2.94	2.66	2.84	2.92
	(1.21)	(1.29)	(1.31)	(1.14)	(1.09)	(1.32)

*Statistically significant difference between the model and ELIZA scores

Example outputs and analysis (1)

- Input: "And a woman is <u>playing piano</u>."
 - CiAPM:
 - "Let's talk about playing piano. What do you think about it?"
 - **RAPM-NONREL:**
 - "Learning something about music... why some people love it and

Input-affected by

some don't?"

- *some don't?* Input-affected by Responses with ConceptNet relations richer vocabulary "I guess you were learning something about music - can you tell me how you did that?"
- ELIZA:

"Let's change focus a bit... Tell me about your family."

• ALICEBOT:

"Aren't all woman playing piano?"

Responses with

Example outputs and analysis (2)

- Input: "And they enjoyed <u>eating delicious food</u> and alcohol."
 - CiAPM:
 - "Let's talk about <u>eating delicious food</u>. What do you think about it?"
 - RAPM-NONREL: *"Talking about <u>diminishing your own hunger</u>... What is your opinion on that topic?" Input-affected but topic preference*

• RAPM-REL: dependents on users "I guess you were <u>diminishing your own hunger</u> - can you tell me how you did that?"

 Conversational topics need to be chosen considering the context and learners' preferences / language levels

Conclusion

- For a future artificial language tutor,
 - Proposed input-affected utterance generation methods
 - Assessed how leaners react with utterances generated by the methods and traditional chatbots
- ELIZA-like confirming style was preferred in the task
- Our approach showed richer vocabulary
- Conversational topics must be carefully selected

Future work

- Combine our methods with vocabulary acquisition systems with a language level estimator [3]
- Incorporate
 - Personality modeling
 - Context processing
 - Functioning spelling and grammar error detection
- Experiment on tutor's autonomy in choosing topics
 - Consider approaches to restrict potentially harmful expressions
- [3] Michal Mazur. A Study on English Language Tutoring System Using Code-Switching Based Second Language Vocabulary Acquisition Method. PhD thesis, Hokkaido University, 2016

References

- Paul Doyon. Shyness in the Japanese EFL class: Why it is a problem, what it is, what causes it, and what to do about it. The Language Teacher, 24(1):11-16, 2000.
- Jiyou Jia. CSIEC: A computer assisted English learning chatbot based on textual knowledge and reason- ing. Knowledge-Based Systems, 22(4):249-255, 2009.
- Shawn Loewen. Error correction in the second language classroom. Clear News, 11(12):1-7, 2007.
- Diane J Tedick. Research on error correction and implications for classroom. ACIE Newsletter, 1986.
- Shinsuke Higuchi, Rafal Rzepka, and Kenji Araki. A casual conversation system using modality and word associations retrieved from the Web. In Proceedings of the Conference on Empirical Methods in Nat- ural Language Processing, EMNLP '08, pages 382–390, Stroudsburg, PA, USA, 2008. Association for Computational Linguistics.
- Michal Mazur. A Study on English Language Tutoring System Using Code-Switching Based Second Language Vocabulary Acquisition Method. PhD thesis, Hokkaido University, 2016