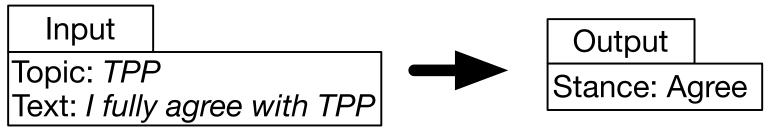
Other Topics You May Also Agree or Disagree: Modeling Inter-Topic Preferences using Tweets and Matrix Factorization

Akira Sasaki, Kazuaki Hanawa, Naoaki Okazaki, Kentaro Inui Tohoku University

Stance classification

• Goal

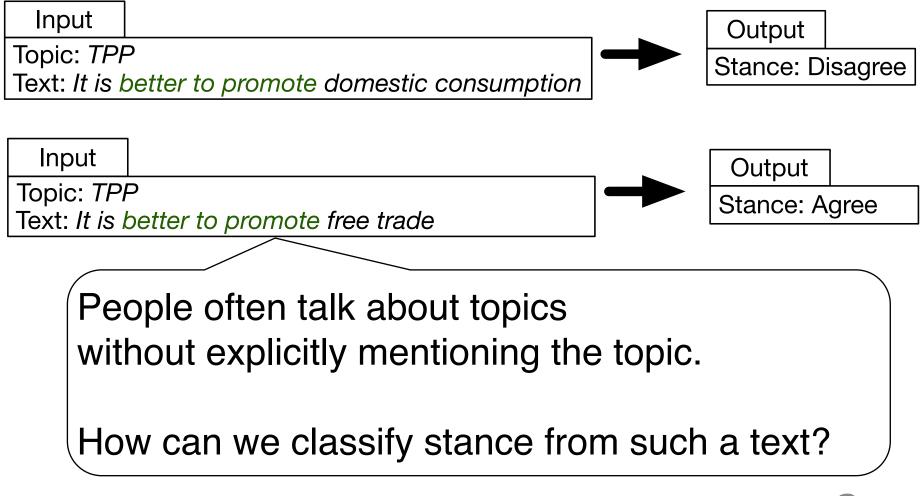
Classify stances of texts in regard to a specific topic



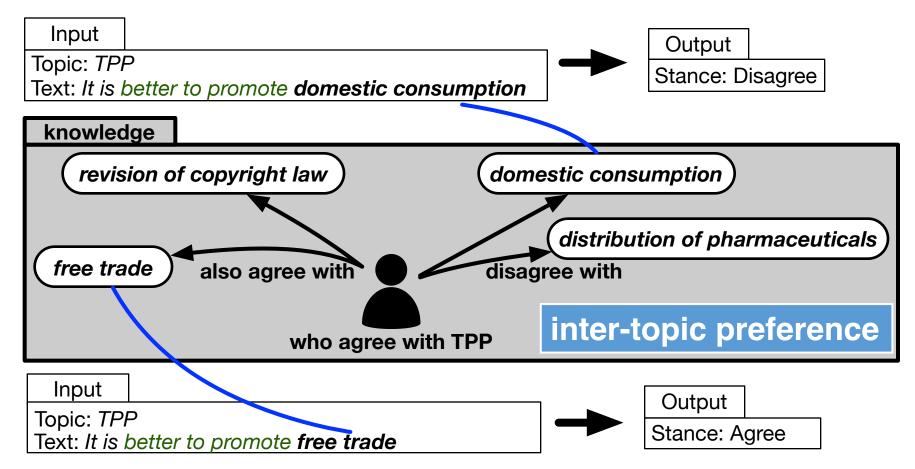
Applications

- Public opinion survey from SNS data
- Predicting voting actions

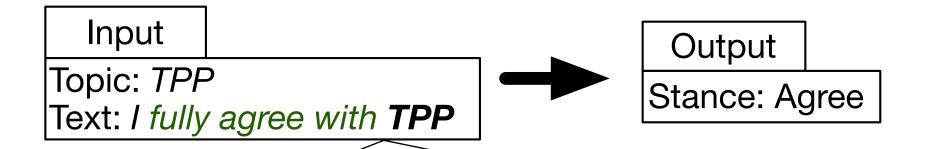
Difficulty of stance classification



Use of inter-topic preferences for stance classification



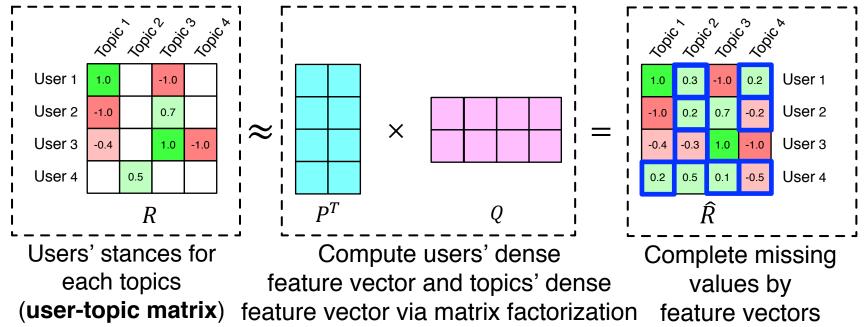
A relatively simple example



Topic words and their surrounding words provide strong clues. (Somasundaran&Wiebe, 2010), (Mohammad+, 2013)

* Although datasets used in this work are in Japanese, we provide examples in English for readability.

Proposal: modeling inter-topic preferences via matrix factorization

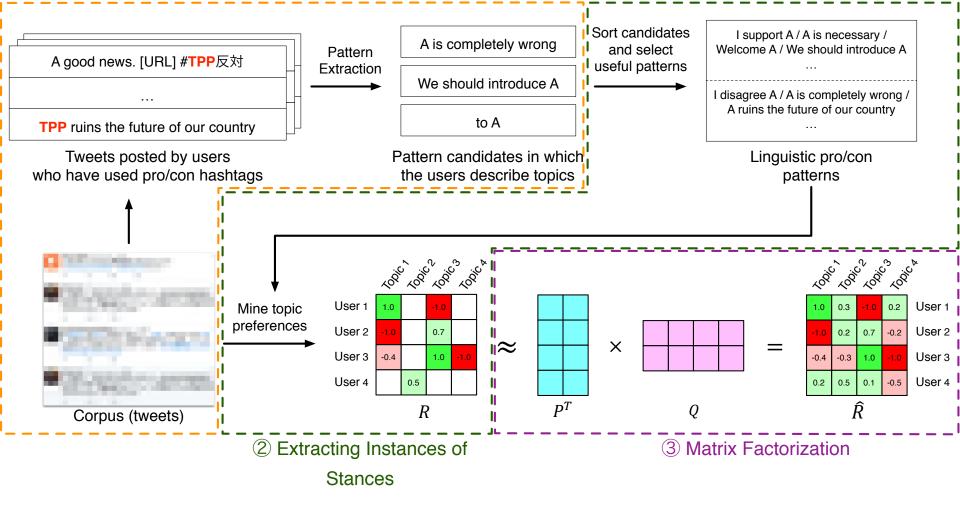


The aim of matrix factorization:

capture inter-topic preferences by dense feature vectors reveal users' hidden stances by completion

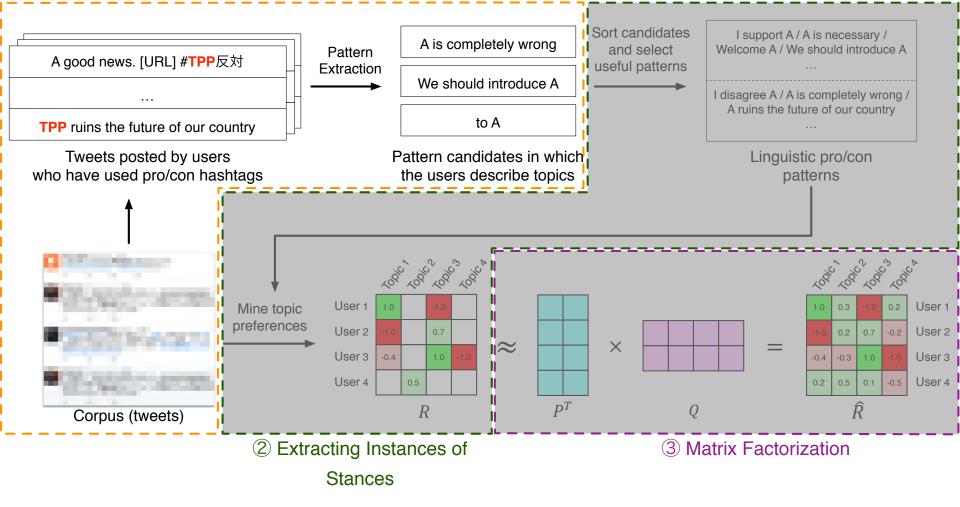
The whole architecture

① Mining Linguistic Patterns of Agreement and Disagreement



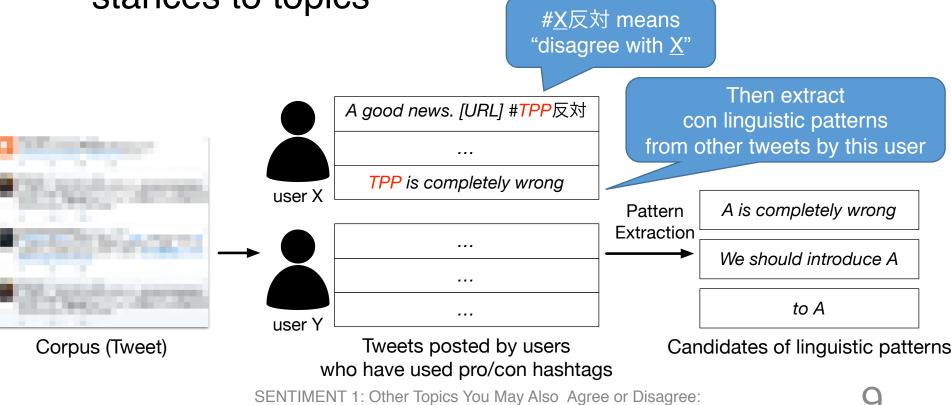
The whole architecture

① Mining Linguistic Patterns of Agreement and Disagreement



Mining linguistic patterns of agreement/disagreement

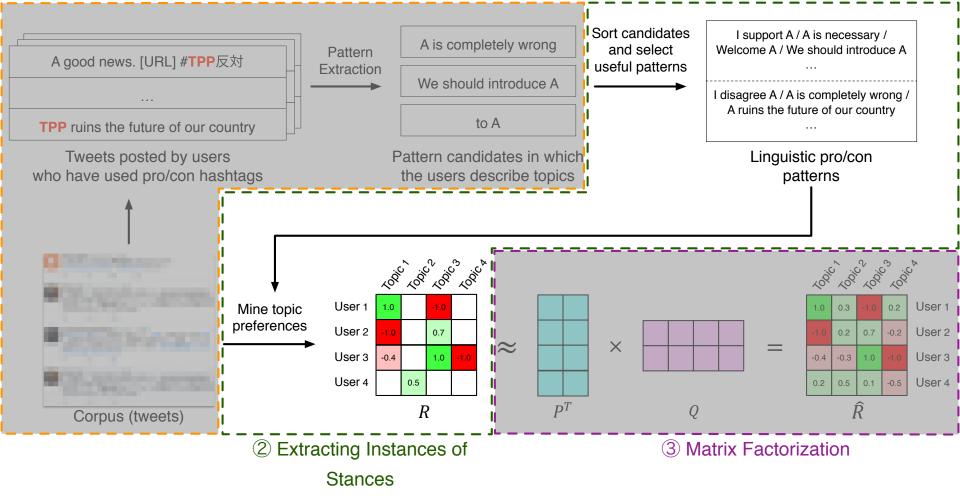
 Focus on pro/con hashtags such as "#X賛成" or "#X反対" used by users who have strong stances to topics



Modeling Inter-Topic Preferences using Tweets and Matrix Factorization

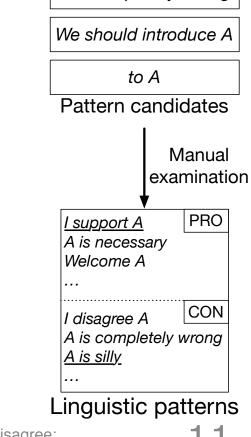
The whole architecture

① Mining Linguistic Patterns of Agreement and Disagreement



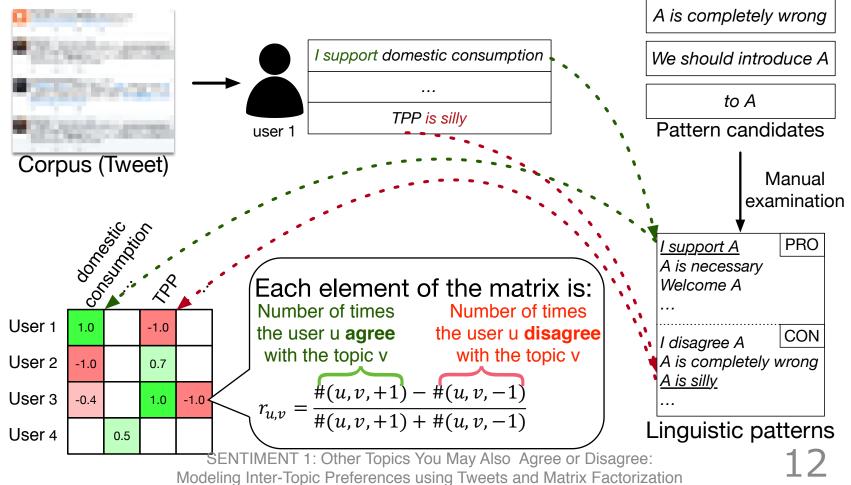
Extracting instances of stances

• Sort aforementioned pattern candidates by their frequency, and filter manually



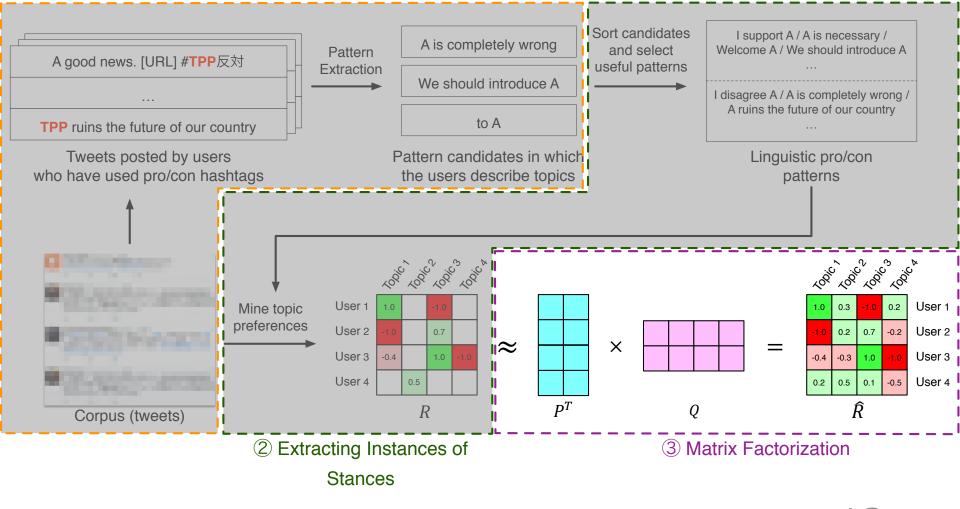
Extracting instances of stances

• By using linguistic patterns, we create user-topic matrix



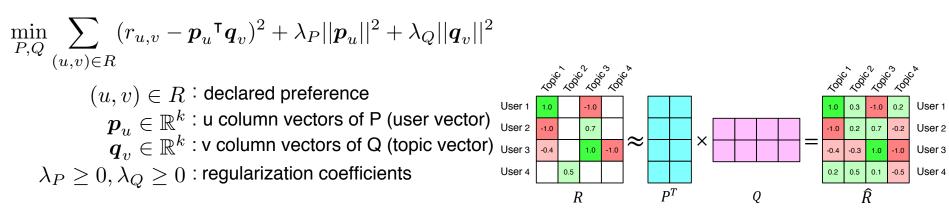
The whole architecture

① Mining Linguistic Patterns of Agreement and Disagreement



Matrix factorization

• By minimizing following objective function



- We can complete missing values as follows: $\hat{r}_{u,v} \simeq \boldsymbol{p}_u^{\ \mathsf{T}} \boldsymbol{q}_v$
- Based on preliminary experiments, we set parameters as k = 100, $\lambda_P = 0.1$, $\lambda_Q = 0.1$ (refer to the paper for more info)
- We use libmf to solve the optimization problem https://github.com/cjlin1/libmf

Evaluation

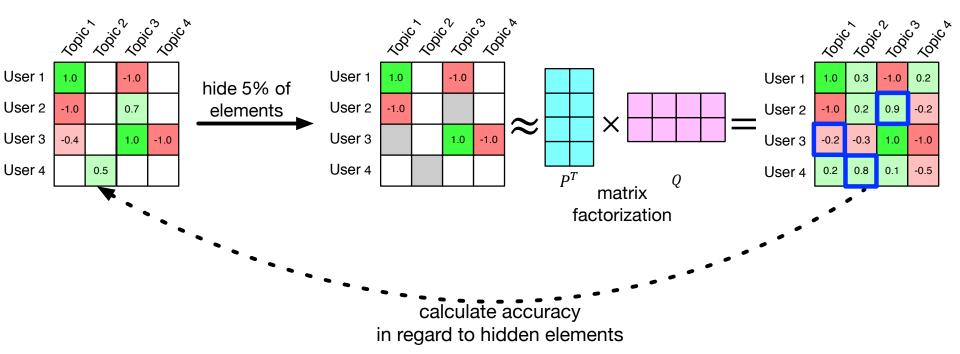
- Ex1: Determining the dimension parameter *k* → RMSE decreased as the number of dimensions (*k*) increased
- Ex2: Predicting missing stances
 → 80-94% accuracy on predicting missing stances

• Ex3: Correlation between human judgements
 → Moderate correlation

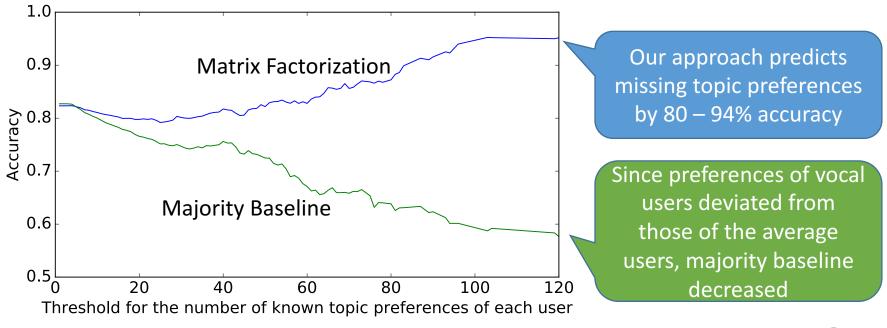
Dataset

- Tweet corpus
 - about 35 Billion tweets crawled from Feb. 2013 to Sep. 2016
 - about 7 Million users
 - · retweets are removed
- Collected data
 - 100 pro patterns and 100 con patterns (manually filtered)
 - about 25 Million tuples (agreement/disagreement declaration) corresponding to about 3 Million users and about 5,000 topics
- User-topic matrix
 - removed users and topics that appeared less than five times
 - about 10 Million tuples corresponding to about 270,000 users and about 2,300 topics
 - sparsity = 98.43%

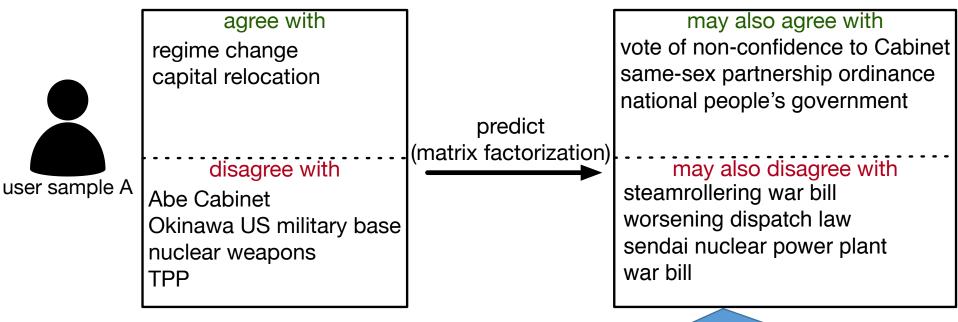
 How accurately can user and topic vectors predict missing stances?



- How accurately can user and topic vectors predict missing stances?
- majority baseline: predict missing values as majority one of agree/disagree in regard to the topic



• Are predicted agreements/disagreements by matrix factorization are reasonable?



Our approach reasonably predicts missing values

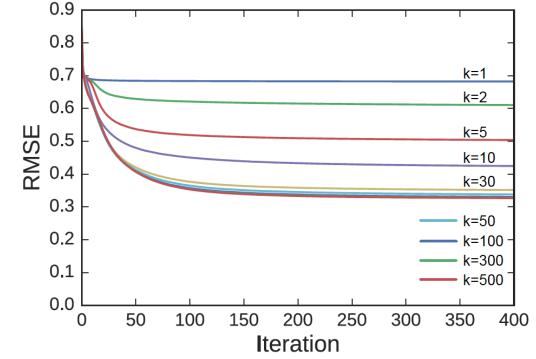
Conclusion

- Modeled inter-topic preferences by matrix factorization
- Our approach accurately predicts missing stances by 80-94% accuracy
- Future work
 - Use methods of targeted sentiment analysis instead of using linguistic patterns
 - Extend our approach to other domains
 - product, company, music, etc

Appendix

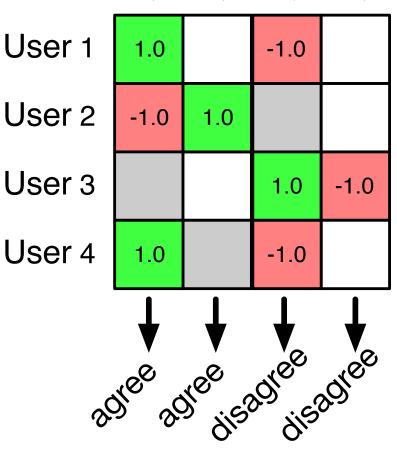
Ex1: Determining the dimension parameter *k*

- We observed that the reconstruction error decreased as the iterative method of libmf progressed

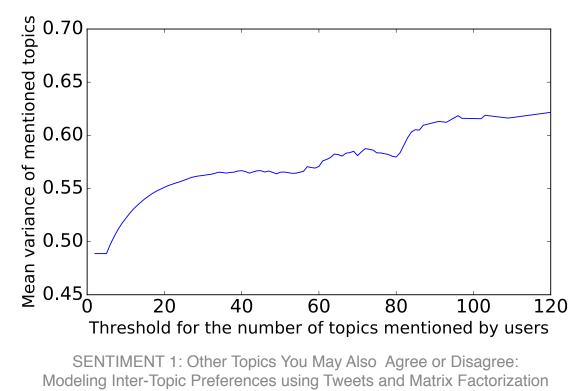


 χ^{O} χ^{O} χ^{O} χ^{O} χ^{O}

 majority baseline: predict missing values as majority one of agree/disagree in regard to the topic

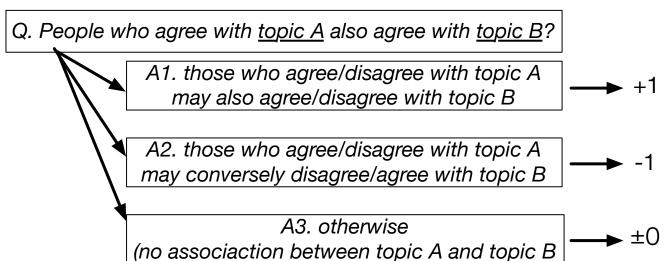


 Since preferences of vocal users deviated from those of the average users, majority baseline decreased



Ex3: Correlation between human judgements

 Created a dataset of pairwise inter-topic preferences by using a crowdsourcing service



 Obtained 6-10 human judgements for every topic pair, then computed the mean of the points

Ex3: Correlation between human judgements

 Compared human judgements and similarity between vectors of pairs



Spearman's rank correlation coefficient = 0.2210

Sub1: Example of predicted missing topic preference (qualitative)

User	Туре	Торіс
Α	Agreement (declared)	regime change, capital relocation
'	Disagreement (declared)	Okinawa US military base, nuclear weapons, TPP, Abe Cabinet, Abe government,
'		nuclear cycle, right to collective defense, nuclear power plant, Abenomics
!	Agreement (predicted)	same-sex partnership ordinance (0.9697), vote of non-confidence to Cabinet (0.9248),
'		national people's government (0.9157), abolition of tax (0.8978)
'	Disagreement (predicted)	steamrollering war bill (-1.0522), worsening dispatch law (-1.0301), Sendai nuclear
.		power plant (-1.0269), war bill (-1.0190), constructing new base (-1.0186), Abe ad-
		ministration (-1.0173), landfill Henoko (-1.0158), unreasonable arrest (-1.0113)
В	Agreement (declared)	visit shrine, marriage
	Disagreement(declared)	tax increase, conscription, amend Article 9
,	Agreement (predicted)	national people's government (0.8467), abolition of tax (0.8300), same-sex partner-
,		ship ordinance (0.7700), security bills (0.6736)
,	Disagreement (predicted)	corporate tax cuts (-1.0439), Liberal Democratic Party's draft constitution (-1.0396),
, L !		radioactivity (-1.0276), rubble (-1.0159), nuclear cycle (-1.0143)

Table 1: Examples of agreement/disagreement topics predicted for two sample users A and B, with predicted score $\hat{r}_{u,v}$ shown in parenthesis.

Sub2: Similarity between topic vectors

 Do the topic vectors obtained by matrix factorization capture inter-topic preferences?

Topic: Liberal Democratic Party (LDP)

Top 7 of similar topics	cosisne similarity	
Abs's LDP	0.3937	Synonymous topics
resuming nuclear power plant operations	0.3765	successfully have similar vectors
bus rapid transit (BRT)	0.3410	
hate speech countermeasure law	0.3373	
Henoko relocation	0.3353	
C-130	0.3338	
Abe administration	0.3248	

Sub2: Similarity between topic vectors

 Do the topic vectors obtained by matrix factorization capture inter-topic preferences?

Topic: Liberal Democratic Party (LDP)

Top 7 of similar topics	cosisne similarity
Abe's LDP	0.3937
resuming nuclear power plant operations	0.3765
bus rapid transit (BRT)	0.3410
hate speech countermeasure law	0.3373
Henoko relocation	0.3353
C-130	0.3338
Abe administration	0.3248

SENTIMENT 1: Other Topics You May Also Agree or Disagree:

Modeling Inter-Topic Preferences using Tweets and Matrix Factorization

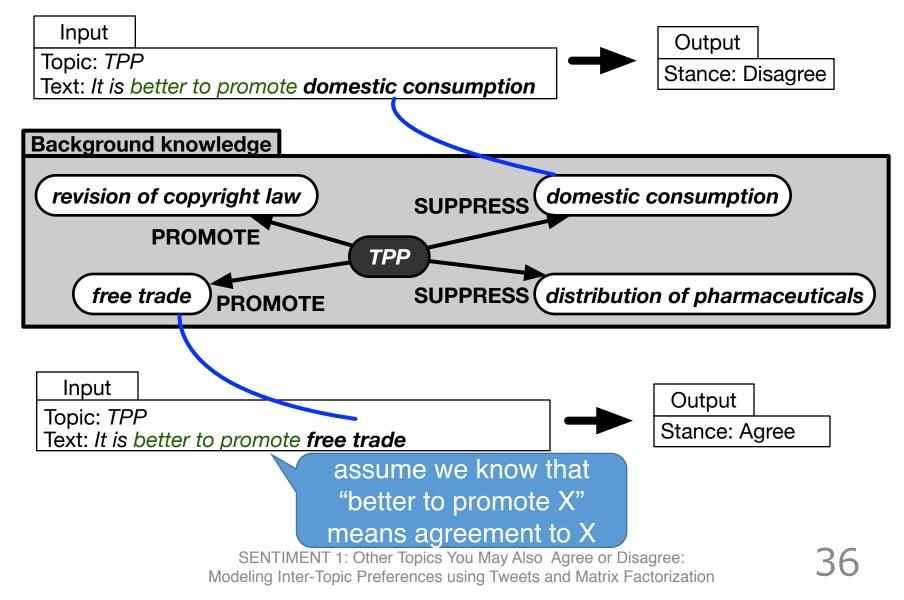
Sub2: Similarity between topic vectors

Topic	Topics with a high degree of cosine similarity
Liberal Democratic Party (LDP)	Abe's LDP (0.3937), resuming nuclear power plant operations (0.3765), bus rapid
	transit (BRT) (0.3410), hate speech countermeasure law (0.3373), Henoko relocation
	(0.3353), C-130 (0.3338), Abe administration (0.3248), LDP & Komeito (0.2898),
	Prime Minister Abe (0.2835)
constitutional amendment	amendment of Article 9 (0.4520), enforcement of specific secret protection law
	(0.4399), security related law (0.4242), specific confidentiality protection law (0.4022),
	security bill amendment (0.3977), defense forces (0.3962), my number law (0.3874),
	collective self-defense rights (0.3687), militarist revival (0.3567)
right of foreigners to vote	human rights law (0.5405), anti-discrimination law (0.5376), hate speech countermea-
	sure law (0.5080), foreigner's life protection (0.4553), immigration refugee (0.4520),
	co-organized Olympics (0.4379)

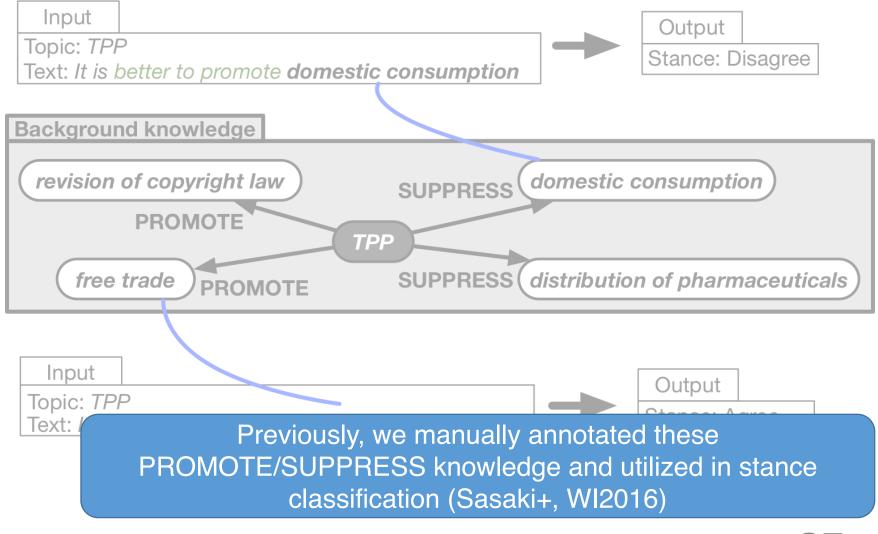
Table 2: Topics identified as being similar to the three controversial topics shown in the left column.

Unused slides

How can we use intrinsic knowledge in stance classification?

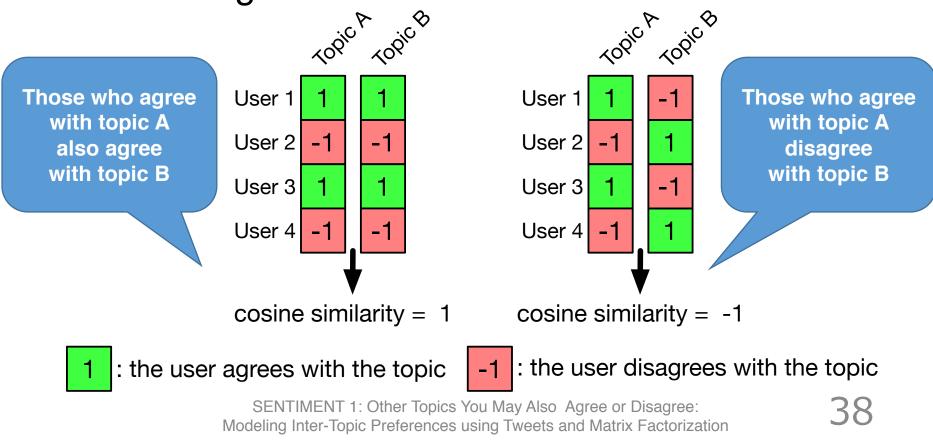


How can we use intrinsic knowledge in stance classification?



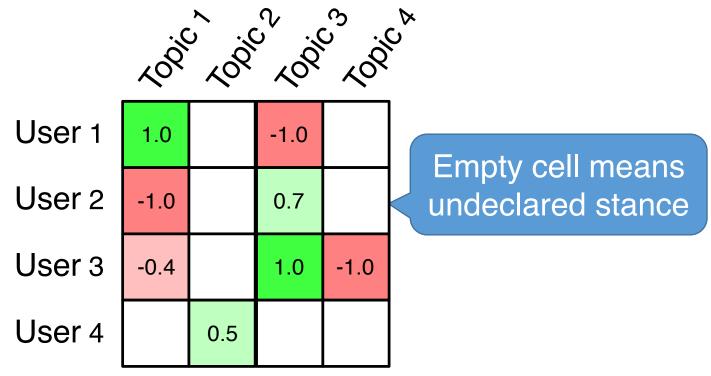
Challenge for modeling inter-topic preference

 Intuitively, we can see a topic as a vector consisting of users' declared stances



Challenge for modeling inter-topic preference

 However, a lot of people declare agreement/disagreement to only a few topics



Other usage of inter-topic preference

- Public opinion survey
 - analyze people's political ideology at low cost (cf. public opinion poll, census)
 - finer-grained than liberal/conservative
- Electoral campaigns
 - we can assume *"those who agree with topic A also vote for party B"*