FrontPage / Learning Markov Logic
概要 †
Statistical Relational Learning (SRL) の代表的な枠組みのひとつである Markov Logic Networks [Richardson & Domingos 2006] とその周辺技術を理解し、SRL に関する研究動向を把握する。
記 †
- 日時
- 毎週水曜日 17:00-(ご飯を食べながら)
- 参加者
- 乾,渡邉,水野,井之上,山本,岡崎
方法 †
- Pedro Domingos 氏の講義資料(http://homes.cs.washington.edu/~pedrod/803/)を参考に進める
- 各回の説明担当者を決めておき、講義資料またはオリジナルの説明資料を用いて発表してもらう
- 担当者は事前に参考文献を読み、ひととおり説明できるようにしておく
- ご飯(ピザ、カレーほか)を食べながら勉強する
参考文献 †
Pedro Domingos and Daniel Lowd, Markov Logic: An Interface Layer for AI, Morgan & Claypool, 2008.
- Video Lectures
担当 †
日付 | 担当者 | 講義タイトル | 参考文献の該当箇所 |
5/22 | 井之上 | Introduction (🔒内部資料) | Chapter 1 |
5/22 | 井之上 | Markov networks (🔒内部資料) | Section 2.2 |
6/5 | 山本 | First-order logic and inductive logic programming (🔒内部資料) | Section 2.1 |
6/12 | 井之上 | Markov logic and other SRL approaches (🔒内部資料) | Sections 2.3 and 2.4 |
6/26 | 井之上 | Markov logic (contd.) (🔒内部資料) | Sections 2.3 and 2.4 |
7/10 | 水野 | Inference | Chapter 3 |
7/17 | 水野 | Inference (Lifted inference) (🔒内部資料) | Chapter 3 |
7/25 13:00- | 岡崎 | Weight learning 🔒内部資料 | Section 4.1 |
8月末? | 井之上 | Structure learning | Sections 4.2, 4.3 and 4.4 |
参考リンク(ソフトウェア) †
- Alchemy (http://alchemy.cs.washington.edu/)
- Alchemy 2.0 (https://code.google.com/p/alchemy-2/)
- Tuffy (http://hazy.cs.wisc.edu/hazy/tuffy/)
- markov thebeast (https://code.google.com/p/thebeast/)
- rockit (https://code.google.com/p/rockit/)
- Walksat (http://www.cs.rochester.edu/u/kautz/walksat/)
参考リンク(論文) †
- Application to discourse processing
- Yufang Hou and Katja Markert and Michael Strube. Global Inference for Bridging Anaphora Resolution. NAACL-HLT2013. pdf
- Islam Beltagy and Cuong Chau and Gemma Boleda and Dan Garrette and Katrin Erk and Raymond Mooney. Montague Meets Markov: Deep Semantics with Probabilistic Logical Form. *SEM2013. pdf
- Katsumasa Yoshikawa, Masayuki Asahara, Yuji Matsumoto. Jointly Extracting Japanese Predicate-Argument Relation with Markov Logic. IJCNLP2011. pdf
- James Blythe, Jerry R. Hobbs, Pedro Domingos, Rohit J. Kate and Raymond J. Mooney. Implementing Weighted Abduction in Markov Logic. IWCS2011. pdf
- Dan Garrette, Katrin Erk, Raymond Mooney. Integrating Logical Representations with Probabilistic Information using Markov Logic. IWCS2011. pdf
- Stefan Schoenmackers, Jesse Davis, Oren Etzioni and Daniel Weld. Learning First-Order Horn Clauses from Web Text. EMNLP2010. pdf
- RohitJ. Kate RaymondJ. Mooney. Probabilistic Abduction using Markov Logic Networks. IJCAI 2009 on PAIR 2009. pdf
- Stefan Schoenmackers, Oren Etzioni and Daniel Weld. Scaling Textual Inference to the Web. EMNLP2010. pdf
- Hoifung Poon, Pedro Domingos. Joint Unsupervised Coreference Resolution with Markov Logic. EMNLP2008. pdf
- Inference
- Cutting Plane Aggregation: Jan Noessner, Mathias Niepert, Heiner Stuckenschmidt. RockIt: Exploiting Parallelism and Symmetry for MAP Inference in Statistical Relational Models. AAAI2013. pdf
- Lifted inference: Vibhav Gogate and Pedro Domingos. Probabilistic Theorem Proving. UAI2011. pdf
- Cutting Plane Inference: Sebastian Riedel, Cutting Plane MAP Inference for Markov Logic. SRL 2009. pdf
- MC-SAT: Hoifung Poon, Pedro Domingos. Sound and Efficient Inference with Probabilistic and Deterministic Dependencies. AAAI 2006. pdf
- LazySAT: Parag Singla, Pedro Domingos. Memory-Efficient Inference in Relational Domains. AAAI 2006. pdf
- SampleSAT: Wei Wei, Jordan Erenrich, and Bart Selman. Towards Efficient Sampling: Exploiting Random Walk Strategies. AAAI 2004. pdf
- WalkSAT: Bart Selman, Henry Kautz, and Bram Cohen. Local Search Strategies for Satisfiability Testing. 1996. pdf
- Structure/Weight Learning
- Tuyen N. Huynh and Raymond J. Mooney. Max-Margin Weight Learning for Markov Logic Networks. SRL2009. pdf
© Inui Laboratory 2010-2018 All rights reserved.