FrontPage / SIG Discourse / 2014
Special Interest Group on Discourse (SIG Discourse) discusses interesting findings of past/state-of-the-art researches. We also report and discuss research progress of our member. Typically, we read one paper (30 minutes) and discuss research progress of one person (40 minutes) at a time. The schedule is listed below.
- Date
- Wednesday 4:30-6:00pm
- Member
- 乾,岡﨑,Canasai,井之上,杉浦,山本,周,Paul,大野,小林
- Related Keywords
- 人工知能/Artificial Intelligence,物語理解/Story Understanding,プラン/Plan,修辞構造/Rhetorical Structure,照応/Anaphora,省略/Ellipsis,ゼロ照応/Zero Anaphora
Schedule †
- 4/8 (Wed)
- Kick-off Meeting (杉浦)
- タスク紹介 (杉浦,山本,周,Paul,稲田,大野,小林)
- 3/4 (Wed)
- 2/25 (Wed)
- Paper reading (稲田)
- Progress report (杉浦)
- 2/18 (Wed)
- Paper reading (周)
- Progress report (山本): 仮説推論の高速化とWSCへの適用 (🔒内部資料)
- 2/4 (Wed)
- 1/28 (Wed)
- 1/14 (Wed)
- 1/7 (Wed)
- 12/17 (Wed)
- 12/10 (Wed)
- Practice talk(山本): 🔒内部資料
- 12/3 (Wed)
- 11/26 (Wed)
- Progress report(周)
- 🔒内部資料
- Progress report(周)
- Paper reading(Canasai)
- 11/19 (Wed)
- Progress report(杉浦)
- 🔒内部資料
- Paper reading(小林)
- Jonathan Berant & Vivek Srikumar et al. : Modeling Biological Processes for Reading Comprehension, EMNLP2014 🔒slide, paper
- Supplement, Project page, Data set, Video
- Progress report(杉浦)
- 11/12 (Wed)
- Progress report(井之上)
- Paper reading(周)
- A Rule-Based System for Unrestricted Bridging Resolution:Recognizing Bridging Anaphora and Finding Links to Antecedents paper
- 🔒marked paper 🔒slides
- 10/29 (Wed)
- 10/22 (Wed)
- Progress report(Canasai)
- An Example-Based Approach to Difficult Pronoun Resolution. 🔒note
- Paper reading(井之上)
- William Yang Wang, Kathryn Mazaitis and William W. Cohen. Programming with Personalized PageRank: A Locally Groundable First-Order Probabilistic Logic. CIKM2013. pdf,
- Matt Gardner, Partha Talukdar, Jayant Krishnamurthy and Tom Mitchell. Incorporating Vector Space Similarity in Random Walk Inference over Knowledge Bases. EMNLP2014. pdf, or
- Gabor Angeli and Christopher D. Manning. NaturalLI: Natural Logic Inference for Common Sense Reasoning. EMNLP2014. pdf
- Progress report(Canasai)
- 🔒内部資料
- 10/15 (Wed)
- 10/8 (Wed)
- Progress report(小林)
- 9/24 (Wed) 16:30- G10
- 9/17 (Wed) 16:30- G10
- Progress report (大野)
- 🔒内部資料
- Progress report (大野)
- 9/3 (Wed) 16:30- G9
- 7/23 (Wed) 16:30- G8
- Progress report (佐藤)
- 🔒内部資料
- Paper reading (杉浦)
- Qi Zhang, Jin Qian, Huan Chen, Jihua Kang, Xuanjing Huang. Discourse Level Explanatory Relation Extraction from Product Reviews Using First-order Logic. ACL2013.
- paper 🔒slides 🔒paper(マーク付き)
- Progress report (佐藤)
- 7/16 (Wed) 16:30- G7
- 7/9 (Wed) 16:30- G6
- 7/2 (Wed) 16:30- G5
- 6/25 (Wed) 16:30- G4
- 6/18 (Wed) 16:30- G3
- 6/11 (Wed) 16:30- G2
- Progress report (Canasai) 🔒slides
- Paper reading (稲田)
- Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise (J Whitehill, et al., NIPS, 2009)
- 🔒slides
- paper
- Supplementary Materials
- 6/4 (Wed) 16:30- G1
- 5/28 (Wed) 16:30- G10
- 5/21 (Wed) 16:30- G9
- 5/14 (Wed) 16:30- G8
- 5/7 (Wed) 16:30- G7
- 4/30 (Wed) 16:30- G6
- 4/23 (Wed) 16:30- G5
- 4/16 (Wed) 16:30-
- 4/10 (Thu) 15:00-
- 4/3 (Thu)
- Progress report (Canasai)
- Progress report (井之上)
- Progress report (杉浦)
Assignment †
G1 | G2 | G3 | G4 | G5 | G6 | G7 | G8 | G9 | G10 | |
Progress report | Canasai | 井之上 | 杉浦 | 山本 | 周 | Paul | 稲田 | 佐藤(雅) | 大野 | 小林 |
Paper reading | Paul | 稲田 | 佐藤(雅) | 大野 | 小林 | Canasai | 井之上 | 杉浦 | 山本 | 周 |
Links †
Artificial Intelligence †
- Levesque, Hector J. "On our best behaviour." The 23rd International Joint Conference on Artificial Intelligence (IJCAI). August. 2013. pdf
- Rahman, Altaf, and Vincent Ng. "Resolving complex cases of definite pronouns: the winograd schema challenge." Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for Computational Linguistics, 2012. pdf dataset dataset 2
- Roemmele, Melissa, Cosmin Adrian Bejan, and Andrew S. Gordon. "Choice of Plausible Alternatives: An Evaluation of Commonsense Causal Reasoning." AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning. 2011. pdf dataset
- Levesque, Hector J., Ernest Davis, and Leora Morgenstern. "The Winograd schema challenge." AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning. 2011. pdf
- Jerry R. Hobbs, Mark Stickel, Douglas Appelt, and Paul Martin. Interpretation as Abduction, Artificial Intelligence, 1993. pdf
Logical Inference †
- Mohammad Shahed Sorower, Thomas G. Dietterich, Janardhan Rao Doppa Walker Orr, Prasad Tadepalli, and Xiaoli Fern. Inverting Grice’s Maxims to Learn Rules from Natural Language Extractions. NIPS 2011. pdf
- Ekaterina Ovchinnikova, Niloofar Montazeri, Theodore Alexandrov, Jerry R. Hobbs, Michael C. McCord and Rutu Mulkar-Mehta. Abductive Reasoning with a Large Knowledge Base for Discourse Processing. IWCS 2011. pdf
- James Blythe, Jerry R. Hobbs, Pedro Domingos, Rohit J. Kate and Raymond J. Mooney. Implementing Weighted Abduction in Markov Logic. IWCS2011. pdf
- Dan Garrette, Katrin Erk, Raymond Mooney. Integrating Logical Representations with Probabilistic Information using Markov Logic. IWCS2011. pdf
- Sindhu V. Raghavan, Raymond J. Mooney. Bayesian Abductive Logic Programs. AAAI 2010. pdf
- RohitJ. Kate RaymondJ. Mooney. Probabilistic Abduction using Markov Logic Networks. IJCAI 2009 on PAIR 2009. pdf
- Jerry R. Hobbs, Mark Stickel, Douglas Appelt, and Paul Martin. Interpretation as Abduction, Artificial Intelligence, 1993. pdf
- J. Bos (2009): Applying automated deduction to natural language understanding. Journal of Applied Logic 7(1): 100–112. pdf
- A Unified Approach to Abductive Inference (ARO 2008 MURI Project@University of Washington)
Discourse Theory †
- Rhetorical Structure Theory
- Discourse Representation Theory
- J. Bos, M. Nissim (2008): Combining Discourse Representation Theory with FrameNet. In: R. Rossini Favretti (ed): Frames, Corpora, and Knowledge Representation, pp 169–183, Bononia University Press. pdf
- Dan Cristea, Nancy Ide and Laurent Romary. Veins Theory: A Model of Global Discourse Cohesion and Coherence. ACL 1998. pdf
- Barbara J. Grosz, Aravind K. Joshi and Scott Weinstein. Centering: A Framework for Modeling the Local Coherence of Discourse. Computational Linguistics, 1995. pdf
- Barbara J. Grosz and Candace L. Sidner. ATTENTION, INTENTIONS, AND THE STRUCTURE OF DISCOURSE. Computational Linguistics, 1986. pdf
- Bonnie Webber. Accounting for Discourse Relations: Constituency and Dependency. Intelligent Linguistic Architectures, 2006. pdf
- Florian Wolf, Edward Gibson. Representing Discourse Coherence: A Corpus-Based Study. Computational Linguistics, 2005.
- Bonnie Webber, Matthew Stone, Aravind Joshi and Alistair Knott. Anaphora and Discourse Structure. Computational Linguistics, 2003. pdf
- Daniel Marcu. A Formal and Computational Synthesis of Grosz and Sidner's and Mann and Thompson's theories. 1999. pdf
- Erhard Hinrichs. Discourse Annotation of Corpora. pdf
- Johanna D. Moore and Martha E. Pollack. A Problem for RST: The Need for Multi-Level Discourse Analysis. Computational Linguistics, 1992. pdf
Discourse Parsing †
- Alexis Palmer, Afra Alishahi and Caroline Sporleder. Robust Semantic Analysis for Unseen Data in FrameNet. RANLP2011. pdf
- Michaela Regneri, Alexander Koller, Josef Ruppenhofer and Manfred Pinkal. Learning Script Participants from Unlabeled Data. RANLP2011. pdf
- Manfred Klenner and Don Tuggener. An Incremental Entity-Mention Model for Coreference Resolution with Restrictive Antecedent Accessibility. RANLP2011. pdf
- Ziheng Lin, Hwee Tou Ng and Min-Yen Kan. Automatically Evaluating Text Coherence Using Discourse Relation. ACL 2011. pdf
- Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. A PDTB-Styled End-to-End Discourse Parser. 2010. pdf
- Annie Louis, Rashmi Prasad, Aravind Joshi and Ani Nenkova. Using Entity Features to Classify Implicit Discourse Relations. SIGDIAL 2010. pdf
- Aria Haghighi and Dan Klein. Coreference Resolution in a Modular, Entity-Centered Model. NAACL-HLT 2010. pdf
- Emily Pitler, Annie Louis and Ani Nenkova. Automatic sense prediction for implicit discourse relations in text. ACL-IJCNLP 2009. pdf
- Rajen Subba and Barbara Di Eugenio. An effective Discourse Parser that uses Rich Linguistic Information. NAACL-HLT 2009. pdf
- Ravikiran Vadlapudi, Poornima Malepati and Suman Yelati. Hierarchical Discourse Parsing Based on Similarity Metrics. RANLP 2009. pdf
- Manfred Klenner, Étienne Ailloud. Optimization in Coreference Resolution is not Needed: A Nearly-Optimal Algorithm with Intensional Constraints. EACL 2009. pdf
- Jason Baldridge and Alex Lascarides. Probabilistic Head-Driven Parsing for Discourse Structure. CoNLL 2005. pdf
- Daniel Marcu and Abdessamad Echihabi. An Unsupervised Approach to Recognizing Discourse Relations. ACL 2002. pdf
Plan Recognition †
- Parag Singla and Raymond J. Mooney. Abductive Markov Logic for Plan Recognition. AAAI2011. pp 1069-1075. pdf
- Nate Blaylock and James Allen. Hierarchical Instantiated Goal Recognition. MOO2006. pdf
- Nate Blaylock and James Allen. Fast Hierarchical Goal Schema Recognition. AAAI2006. pdf
- Douglas E. Appelt and Martha E. Pollack. Weighted Abduction for Plan Ascription. Technical Note 491, SRI International, 1992. pdf
- Sandra Carberry. Techniques for Plan Recognition. User Modeling and User-Adapted Interaction, 11(1-2), pp. 31-48, 2001. pdf
Corpus †
- Penn Discourse Treebank
- RST Discourse Treebank
- Discourse Graphbank: paper LDC
- SDRT annotations of dialogues: DISCOR project
Knowledge Acquisition †
- Doo Soon Kim and Bruce Poter. Integrating declarative knowledge : Issues, Algorithms and Future Work. AAAI2008. pdf
- Jonathan Berant, Tel Aviv and Jacob Goldberger. Global Learning of Typed Entailment Rules. ACL2011. (to appear) pdf
- Stefan Schoenmackers, Jesse Davis, Oren Etzioni and Daniel Weld. Learning First-Order Horn Clauses from Web Text. EMNLP2010. pdf
- Nathanael Chambers and Dan Jurafsky. Unsupervised Learning of Narrative Schemas and their Participants. ACL2010. pdf
Lectures †
- University of Southern California: Introduction to NLP, Empirical Methods in Natural Language Processing
- MIT: Computational Models of Discourse
- Tohoku University: http://www.is.tohoku.ac.jp/_eng/introduction/laboratories/sis/iis_cs.html
- Story Understanding Resources
- David Poole and Alan Mackworth. Artificial Intelligence: Foundations of Computational Agents
Tools †
Misc. †
© Inui Laboratory 2010-2018 All rights reserved.